Elastic $k$-means clustering of functional data for posterior exploration, with an application to inference on acute respiratory infection dynamics


Abstract in English

We propose a new method for clustering of functional data using a $k$-means framework. We work within the elastic functional data analysis framework, which allows for decomposition of the overall variation in functional data into amplitude and phase components. We use the amplitude component to partition functions into shape clusters using an automated approach. To select an appropriate number of clusters, we additionally propose a novel Bayesian Information Criterion defined using a mixture model on principal components estimated using functional Principal Component Analysis. The proposed method is motivated by the problem of posterior exploration, wherein samples obtained from Markov chain Monte Carlo algorithms are naturally represented as functions. We evaluate our approach using a simulated dataset, and apply it to a study of acute respiratory infection dynamics in San Luis Potos{i}, Mexico.

Download