We study the two dimensional (2D) line-of-sight velocity ($V_{rm los}$) field of the low-inclination, late-type galaxy VV304a. The resulting 2D kinematic map reveals a global, coherent and extended perturbation that is likely associated with a recent interaction with the massive companion VV304b. We use multi-band imaging and a suite of test particle simulations to quantify the plausible strength of in-plane flows due to non-axisymmetric perturbations and show that the observed velocity flows are much too large to be driven either by spiral structure nor by a bar. We use fully cosmological hydrodynamical simulations to characterize the contribution from in- and off-plane velocity flows to the $V_{rm los}$ field of recently interacting galaxy pairs like the VV304 system. We show that, for recently perturbed low-inclination galactic discs, the structure of the residual velocity field, after subtraction of an axisymmetric rotation model, can be dominated by vertical flows. Our results indicate that the $V_{rm los}$ perturbations in VV304a are consistent with a corrugation pattern. Its $V_{rm los}$ map suggests the presence of a structure similar to the Monoceros ring seen in the Milky Way. Our study highlights the possibility of addressing important questions regarding the nature and origin of vertical perturbations by measuring the line-of-sight velocities in low-inclination nearby galaxies.