Gravitational wave spectra from oscillon formation after inflation


Abstract in English

We systematically investigate the preheating behavior of single field inflation with an oscillon-supporting potential. We compute the properties of the emitted gravitational waves (GWs) and the number density and characteristics of the produced oscillons. By performing numerical simulations for a variety of potential types, we divide the analyzed potentials in two families, each of them containing potentials with varying large- or small-field dependence. We find that the shape and amplitude of the emitted GW spectrum have a universal feature, with the peak around the physical wavenumber $k/a sim m$ at the inflaton oscillation period, irrespective of the exact potential shape. This can be used as a smoking-gun for deducing the existence of a violent preheating phase and possible oscillon formation after inflation. Despite this apparent universality, we find differences in the shape of the emitted GW spectra between the two potential families, leading to discriminating features between them. In particular, all potentials show the emergence of a two-peak structure in the GW spectrum, arising at the time of oscillon formation. However, potentials exhibiting efficient parametric resonance tend to smear out this structure and by the end of the simulation the GW spectrum exhibits a single broad peak. We further compute the properties of the produced oscillons for each potential, finding differences in the number density and size distribution of stable oscillons and transient overdensities. We perform a linear fluctuation analysis and use Floquet charts to relate the results of our simulations to the structure of parametric resonance. We find that the growth rate of scalar perturbations and the associated oscillon formation time are sensitive to the small-field potential shape while the macroscopic physical properties of oscillons (e.g. total number) depend on the large-field potential shape.

Download