Short-distance HLbL contributions to the muon g-2


Abstract in English

The current $3.7sigma$ discrepancy between the Standard Model prediction and the experimental value of the muon anomalous magnetic moment could be a hint for the existence of new physics. The hadronic light-by-light contribution is one of the pieces requiring improved precision on the theory side, and an important step is to derive short-distance constraints for this quantity containing four electromagnetic currents. Here, we derive such short-distance constraints for three large photon loop virtualities and the external fourth photon in the static limit. The static photon is considered as a background field and we construct a systematic operator product expansion in the presence of this field. We show that the massless quark loop, i.e. the leading term, is numerically dominant over non-perturbative contributions up to next-to-next-to leading order, both those suppressed by quark masses and those that are not.

Download