Towards SAR Tomographic Inversion via Sparse Bayesian Learning


Abstract in English

Existing SAR tomography (TomoSAR) algorithms are mostly based on an inversion of the SAR imaging model, which are often computationally expensive. Previous study showed perspective of using data-driven methods like KPCA to decompose the signal and reduce the computational complexity. This paper gives a preliminary demonstration of a new data-driven method based on sparse Bayesian learning. Experiments on simulated data show that the proposed method significantly outperforms KPCA methods in estimating the steering vectors of the scatterers. This gives a perspective of data-drive approach or combining it with model-driven approach for high precision tomographic inversion of large areas.

Download