Do you want to publish a course? Click here

Towards SAR Tomographic Inversion via Sparse Bayesian Learning

75   0   0.0 ( 0 )
 Added by Kun Qian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Existing SAR tomography (TomoSAR) algorithms are mostly based on an inversion of the SAR imaging model, which are often computationally expensive. Previous study showed perspective of using data-driven methods like KPCA to decompose the signal and reduce the computational complexity. This paper gives a preliminary demonstration of a new data-driven method based on sparse Bayesian learning. Experiments on simulated data show that the proposed method significantly outperforms KPCA methods in estimating the steering vectors of the scatterers. This gives a perspective of data-drive approach or combining it with model-driven approach for high precision tomographic inversion of large areas.



rate research

Read More

Sparse Bayesian learning (SBL) is a powerful framework for tackling the sparse coding problem while also providing uncertainty quantification. However, the most popular inference algorithms for SBL become too expensive for high-dimensional problems due to the need to maintain a large covariance matrix. To resolve this issue, we introduce a new SBL inference algorithm that avoids explicit computation of the covariance matrix, thereby saving significant time and space. Instead of performing costly matrix
78 - Jisheng Dai , An Liu , 2019
This study addresses the problem of discrete signal reconstruction from the perspective of sparse Bayesian learning (SBL). Generally, it is intractable to perform the Bayesian inference with the ideal discretization prior under the SBL framework. To overcome this challenge, we introduce a novel discretization enforcing prior to exploit the knowledge of the discrete nature of the signal-of-interest. By integrating the discretization enforcing prior into the SBL framework and applying the variational Bayesian inference (VBI) methodology, we devise an alternating update algorithm to jointly characterize the finite alphabet feature and reconstruct the unknown signal. When the measurement matrix is i.i.d. Gaussian per component, we further embed the generalized approximate message passing (GAMP) into the VBI-based method, so as to directly adopt the ideal prior and significantly reduce the computational burden. Simulation results demonstrate substantial performance improvement of the two proposed methods over existing schemes. Moreover, the GAMP-based variant outperforms the VBI-based method with an i.i.d. Gaussian measurement matrix but it fails to work for non i.i.d. Gaussian matrices.
178 - Man Luo , Qinghua Guo , Ming Jin 2021
Sparse Bayesian learning (SBL) can be implemented with low complexity based on the approximate message passing (AMP) algorithm. However, it does not work well for a generic measurement matrix, which may cause AMP to diverge. Damped AMP has been used for SBL to alleviate the problem at the cost of reducing convergence speed. In this work, we propose a new SBL algorithm based on structured variational inference, leveraging AMP with a unitary transformation (UAMP). Both single measurement vector and multiple measurement vector problems are investigated. It is shown that, compared to state-of-the-art AMP-based SBL algorithms, the proposed UAMP-SBL is more robust and efficient, leading to remarkably better performance.
Layover separation has been fundamental to many synthetic aperture radar applications, such as building reconstruction and biomass estimation. Retrieving the scattering profile along the mixed dimension (elevation) is typically solved by inversion of the SAR imaging model, a process known as SAR tomography. This paper proposes a nonlinear blind scatterer separation method to retrieve the phase centers of the layovered scatterers, avoiding the computationally expensive tomographic inversion. We demonstrate that conventional linear separation methods, e.g., principle component analysis (PCA), can only partially separate the scatterers under good conditions. These methods produce systematic phase bias in the retrieved scatterers due to the nonorthogonality of the scatterers steering vectors, especially when the intensities of the sources are similar or the number of images is low. The proposed method artificially increases the dimensionality of the data using kernel PCA, hence mitigating the aforementioned limitations. In the processing, the proposed method sequentially deflates the covariance matrix using the estimate of the brightest scatterer from kernel PCA. Simulations demonstrate the superior performance of the proposed method over conventional PCA-based methods in various respects. Experiments using TerraSAR-X data show an improvement in height reconstruction accuracy by a factor of one to three, depending on the used number of looks.
This paper is about variable selection, clustering and estimation in an unsupervised high-dimensional setting. Our approach is based on fitting constrained Gaussian mixture models, where we learn the number of clusters $K$ and the set of relevant variables $S$ using a generalized Bayesian posterior with a sparsity inducing prior. We prove a sparsity oracle inequality which shows that this procedure selects the optimal parameters $K$ and $S$. This procedure is implemented using a Metropolis-Hastings algorithm, based on a clustering-oriented greedy proposal, which makes the convergence to the posterior very fast.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا