Do you want to publish a course? Click here

HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color Histograms

84   0   0.0 ( 0 )
 Added by Mahmoud Afifi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

While generative adversarial networks (GANs) can successfully produce high-quality images, they can be challenging to control. Simplifying GAN-based image generation is critical for their adoption in graphic design and artistic work. This goal has led to significant interest in methods that can intuitively control the appearance of images generated by GANs. In this paper, we present HistoGAN, a color histogram-based method for controlling GAN-generated images colors. We focus on color histograms as they provide an intuitive way to describe image color while remaining decoupled from domain-specific semantics. Specifically, we introduce an effective modification of the recent StyleGAN architecture to control the colors of GAN-generated images specified by a target color histogram feature. We then describe how to expand HistoGAN to recolor real images. For image recoloring, we jointly train an encoder network along with HistoGAN. The recoloring model, ReHistoGAN, is an unsupervised approach trained to encourage the network to keep the original images content while changing the colors based on the given target histogram. We show that this histogram-based approach offers a better way to control GAN-generated and real images colors while producing more compelling results compared to existing alternative strategies.



rate research

Read More

With the recent progress in Generative Adversarial Networks (GANs), it is imperative for media and visual forensics to develop detectors which can identify and attribute images to the model generating them. Existing works have shown to attribute images to their corresponding GAN sources with high accuracy. However, these works are limited to a closed set scenario, failing to generalize to GANs unseen during train time and are therefore, not scalable with a steady influx of new GANs. We present an iterative algorithm for discovering images generated from previously unseen GANs by exploiting the fact that all GANs leave distinct fingerprints on their generated images. Our algorithm consists of multiple components including network training, out-of-distribution detection, clustering, merge and refine steps. Through extensive experiments, we show that our algorithm discovers unseen GANs with high accuracy and also generalizes to GANs trained on unseen real datasets. We additionally apply our algorithm to attribution and discovery of GANs in an online fashion as well as to the more standard task of real/fake detection. Our experiments demonstrate the effectiveness of our approach to discover new GANs and can be used in an open-world setup.
Recently, GAN based method has demonstrated strong effectiveness in generating augmentation data for person re-identification (ReID), on account of its ability to bridge the gap between domains and enrich the data variety in feature space. However, most of the ReID works pick all the GAN generated data as additional training samples or evaluate the quality of GAN generation at the entire data set level, ignoring the image-level essential feature of data in ReID task. In this paper, we analyze the in-depth characteristics of ReID sample and solve the problem of What makes a GAN-generated image good for ReID. Specifically, we propose to examine each data sample with id-consistency and diversity constraints by mapping image onto different spaces. With a metric-based sampling method, we demonstrate that not every GAN-generated data is beneficial for augmentation. Models trained with data filtered by our quality evaluation outperform those trained with the full augmentation set by a large margin. Extensive experiments show the effectiveness of our method on both supervised ReID task and unsupervised domain adaptation ReID task.
Last-generation GAN models allow to generate synthetic images which are visually indistinguishable from natural ones, raising the need to develop tools to distinguish fake and natural images thus contributing to preserve the trustworthiness of digital images. While modern GAN models can generate very high-quality images with no visible spatial artifacts, reconstruction of consistent relationships among colour channels is expectedly more difficult. In this paper, we propose a method for distinguishing GAN-generated from natural images by exploiting inconsistencies among spectral bands, with specific focus on the generation of synthetic face images. Specifically, we use cross-band co-occurrence matrices, in addition to spatial co-occurrence matrices, as input to a CNN model, which is trained to distinguish between real and synthetic faces. The results of our experiments confirm the goodness of our approach which outperforms a similar detection technique based on intra-band spatial co-occurrences only. The performance gain is particularly significant with regard to robustness against post-processing, like geometric transformations, filtering and contrast manipulations.
Fake face detection is a significant challenge for intelligent systems as generative models become more powerful every single day. As the quality of fake faces increases, the trained models become more and more inefficient to detect the novel fake faces, since the corresponding training data is considered outdated. In this case, robust One-Shot learning methods is more compatible with the requirements of changeable training data. In this paper, we propose a universal One-Shot GAN generated fake face detection method which can be used in significantly different areas of anomaly detection. The proposed method is based on extracting out-of-context objects from faces via scene understanding models. To do so, we use state of the art scene understanding and object detection methods as a pre-processing tool to detect the weird objects in the face. Second, we create a bag of words given all the detected out-of-context objects per all training data. This way, we transform each image into a sparse vector where each feature represents the confidence score related to each detected object in the image. Our experiments show that, we can discriminate fake faces from real ones in terms of out-of-context features. It means that, different sets of objects are detected in fake faces comparing to real ones when we analyze them with scene understanding and object detection models. We prove that, the proposed method can outperform previous methods based on our experiments on Style-GAN generated fake faces.
In real-world underwater environment, exploration of seabed resources, underwater archaeology, and underwater fishing rely on a variety of sensors, vision sensor is the most important one due to its high information content, non-intrusive, and passive nature. However, wavelength-dependent light attenuation and back-scattering result in color distortion and haze effect, which degrade the visibility of images. To address this problem, firstly, we proposed an unsupervised generative adversarial network (GAN) for generating realistic underwater images (color distortion and haze effect) from in-air image and depth map pairs based on improved underwater imaging model. Secondly, U-Net, which is trained efficiently using synthetic underwater dataset, is adopted for color restoration and dehazing. Our model directly reconstructs underwater clear images using end-to-end autoencoder networks, while maintaining scene content structural similarity. The results obtained by our method were compared with existing methods qualitatively and quantitatively. Experimental results obtained by the proposed model demonstrate well performance on open real-world underwater datasets, and the processing speed can reach up to 125FPS running on one NVIDIA 1060 GPU. Source code, sample datasets are made publicly available at https://github.com/infrontofme/UWGAN_UIE.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا