Do you want to publish a course? Click here

NOMA-Based Cooperative Relaying with Receive Diversity in Nakagami-m Fading Channels

291   0   0.0 ( 0 )
 Added by Vaibhav Kumar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Non-orthogonal multiple access (NOMA) is being widely considered as a potential candidate to enhance the spectrum utilization in beyond fifth-generation (B5G) communications. In this paper, we derive closed-form expressions for the ergodic rate and outage probability of a multiple-antenna-assisted NOMA-based cooperative relaying system (CRS-NOMA). We present the performance analysis of the system for two different receive diversity schemes - selection combining (SC) and maximal-ratio combining (MRC), in Nakagami-m fading. We also evaluate the asymptotic behavior of the CRS-NOMA to determine the slope of the ergodic rate and diversity order. Our results show that in contrast to the existing CRS-NOMA systems, the CRS-NOMA with receive diversity outperforms its orthogonal multiple access (OMA) based counterpart even in the low-SNR regime, by achieving higher ergodic rate. Diversity analysis confirms that the CRS-NOMA achieves full diversity order using both SC and MRC schemes, and this diversity order depends on both the shape parameter m and the number of receive antennas. We also discuss the problem of optimal power allocation for the minimization of the outage probability of the system, and subsequently use this optimal value to obtain the ergodic rate. An excellent match is observed between the numerical and the analytical results, confirming the correctness of the derived analytical expressions.



rate research

Read More

This paper studies the performance of a downlink non-orthogonal multiple access (NOMA) based cooperative network with maximal ratio transmission/receive antenna selection (MRT/RAS) over Nakagami-m fading channels in the presence of channel estimation errors (CEEs). In the system, a base station communicates with multiple mobile users through a half duplex channel state information based amplify-and-forward relay. All nodes are equipped with multiple antennas and the hybrid diversity technique MRT/RAS is employed in both hops. The outage behavior of the system is investigated by driving closed-form expression for outage probability (OP). In addition, the corresponding lower and upper bounds of the derived OP are obtained. Moreover, the behavior of the system is studied in high signal-to-noise ratio region by obtaining an error floor value in the presence of CEE as well as achieving diversity and array gains in the absence of CEE. Finally, the analytical results in the presence and absence of the CEEs are verified by the Monte Carlo simulations. Results show that the MRT/RAS scheme enhances the OP significantly and is much more robust to the CEEs in comparison with the single antenna case.
84 - Wei Duan , Jinjuan Ju , Qiang Sun 2018
This paper considers the cooperative device-to-device (D2D) systems with non-orthogonal multiple access (NOMA). We assume that the base station (BS) can communicate simultaneously with all users to satisfy the full information transmission. In order to characterize the impact of the weak channel and different decoding schemes, two kinds of decoding strategies are proposed: emph{single signal decoding scheme} and emph{MRC decoding scheme}, respectively. For the emph{single signal decoding scheme}, the users immediately decode the received signals after receptions from the BS. Meanwhile, for the emph{MRC decoding scheme}, instead of decoding, the users will keep the receptions in reserve until the corresponding phase comes and the users jointly decode the received signals by employing maximum ratio combining (MRC). Considering Rayleigh fading channels, the ergodic sum-rate (SR), outage probability and outage capacity of the proposed D2D-NOMA system are analyzed. Moreover, approximate expressions for the ergodic SR are also provided with a negligible performance loss. Numerical results demonstrate that the ergodic SR and outage probability of the proposed D2D-NOMA scheme overwhelm that of the conventional NOMA schemes. Furthermore, it is also revealed that the system performance including the ergodic SR and outage probability are limited by the poor channel condition for both the emph{single signal decoding scheme} and conventional NOMA schemes.
In this paper, outage performance of hybrid automatic repeat request with incremental redundancy (HARQ-IR) is analyzed. Unlike prior analyses, time-correlated Nakagami-$m$ fading channel is considered. The outage analysis thus involves the probability distribution analysis of a product of multiple correlated shifted Gamma random variables and is more challenging than prior analyses. Based on the finding of the conditional independence of the received signal-to-noise ratios (SNRs), the outage probability is exactly derived by using conditional Mellin transform. Specifically, the outage probability of HARQ-IR under time-correlated Nakagami-$m$ fading channels can be written as a weighted sum of outage probabilities of HARQ-IR over independent Nakagami fading channels, where the weightings are determined by a negative multinomial distribution. This result enables not only an efficient truncation approximation of the outage probability with uniform convergence but also asymptotic outage analysis to further extract clear insights which have never been discovered for HARQ-IR even under fast fading channels. The asymptotic outage probability is then derived in a simple form which clearly quantifies the impacts of transmit powers, channel time correlation and information transmission rate. It is proved that the asymptotic outage probability is an inverse power function of the product of transmission powers in all HARQ rounds, an increasing function of the channel time correlation coefficients, and a monotonically increasing and convex function of information transmission rate. The simple expression of the asymptotic result enables optimal power allocation and optimal rate selection of HARQ-IR with low complexity. Finally, numerical results are provided to verify our analytical results and justify the application of the asymptotic result for optimal system design.
The present paper is devoted to the evaluation of energy detection based spectrum sensing over different multipath fading and shadowing conditions. This is realized by means of a unified and versatile approach that is based on the particularly flexible mixture gamma distribution. To this end, novel analytic expressions are firstly derived for the probability of detection over MG fading channels for the conventional single-channel communication scenario. These expressions are subsequently employed in deriving closed-form expressions for the case of square-law combining and square-law selection diversity methods. The validity of the offered expressions is verified through comparisons with results from respective computer simulations. Furthermore, they are employed in analyzing the performance of energy detection over multipath fading, shadowing and composite fading conditions, which provides useful insighs on the performance and design of future cognitive radio based communication systems.
Unmanned aerial vehicles (UAVs) are set to feature heavily in upcoming fifth generation (5G) networks. Yet, the adoption of multi-UAV networks means that spectrum scarcity in UAV communications is an issue in need of urgent solutions. Towards this end, downlink non-orthogonal multiple access (NOMA) is investigated in this paper for multi-UAV networks to improve spectrum utilization. Using the bivariate Rician shadowed fading model, closed-form expressions for the joint probability density function (PDF), marginal cumulative distribution functions (CDFs), and outage probability expressions are derived. Under a stochastic geometry framework for downlink NOMA at the UAVs, an outage probability analysis of the multi-UAV network is conducted, where it is shown that downlink NOMA attains lower outage probability than orthogonal multiple access (OMA). Furthermore, it is shown that NOMA is less susceptible to shadowing than OMA.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا