Do you want to publish a course? Click here

Air temperature and humidity during the solar eclipses of 26 December 2019 and of 21 June 2020 in Saudi Arabia and in other eclipses with similar environments

88   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report air temperature and humidity changes during the two solar eclipses of 26 December 2019, and of 21 June 2020, respectively, in the cities of Al-Hofuf and Riyadh in Saudi Arabia. During the December eclipse the Sun rose already eclipsed (91.53% of the area covered) while the June eclipse, although also annular in other places of the Arabian Peninsula, was just partial at Riyadh (area covered 72.80%). This difference apparently affected the observed response on the recorded variables of temperature, relative humidity (RH) and vapor pressure (VP) in the two events. Change in these variables went unnoticed for the first eclipse since it was within the natural variability of the day; yet for the other, they showed clearly some trend alterations, which we analyze and discuss. A decrease in temperature of 3.2 {deg}C was detected in Riyadh; however, RH and VP showed an oscillation that we explain in the light of a similar effect reported in other eclipses. We found a time lag of about 15 min measured from the eclipse central phase in this city. We made an inspection of related fluctuations and dynamics from the computed rates of the temporal variation of temperature and RH. Trying to identify the influence of solar eclipses in similar environments we have made a broad inter-comparison with other observations of these variables in the Near East, northern Africa and in the United States. We compare our results with results obtained by other authors working with the December eclipse but in the United Arab Emirates and Oman, which showed dissimilar results. These inter-comparisons show how effectively the lower atmosphere can respond to a solar eclipse within a desert environment and others similar. As a preamble, a historical revision of temperature and humidity in the context of eclipse meteorology is also included.



rate research

Read More

We have studied the corona as seen at the eclipses of 1878, 1900, 1901 and others. These eclipses occurred during extended sunspot minimum conditions. We compare these data with those of the recent solar minimum corona, using data from the eclipses of July 22 2009 and August 1 2008. An attempt to characterize the global solar magnetic fields is made. We speculate on the origin of the non-dipolar structure seen in the 2008 and 2009 eclipse images.
This study aims timing the eclipses of the short period low mass binary star AB And. The times of minima are taken from the literature and from our observations in October 2013 (22 times of minima) and in August 2014 (23 times of minima). We find and discuss an inaccuracy in the determination of the types of minima in the previous investigation by citet{li2014}. We study the secular evolution of the central binarys orbital period and the possibility of the existence of third and fourth companions in the system.
We present limits on transit timing variations and secondary eclipse depth variations at 8 microns with the Spitzer Space Telescope IRAC camera. Due to the weak limb darkening in the infrared and uninterrupted observing, Spitzer provides the highest accuracy transit times for this bright system, in principle providing sensitivity to secondary planets of Mars mass in resonant orbits. Finally, the transit data provides tighter constraints on the wavelength- dependent atmospheric absorption by the planet.
The eruption of the recurrent nova U Scorpii on 28 January 2010 is now the all-time best observed nova event. We report 36,776 magnitudes throughout its 67 day eruption, for an average of one measure every 2.6 minutes. This unique and unprecedented coverage is the first time that a nova has any substantial amount of fast photometry. With this, two new phenomena have been discovered: the fast flares in the early light curve seen from days 9-15 (which have no proposed explanation) and the optical dips seen out of eclipse from days 41-61 (likely caused by raised rims of the accretion disk occulting the bright inner regions of the disk as seen over specific orbital phases). The expanding shell and wind cleared enough from days 12-15 so that the inner binary system became visible, resulting in the sudden onset of eclipses and the turn-on of the supersoft X-ray source. On day 15, a strong asymmetry in the out-of-eclipse light points to the existence of the accretion stream. The normal optical flickering restarts on day 24.5. For days 15-26, eclipse mapping shows that the optical source is spherically symmetric with a radius of 4.1 R_sun. For days 26-41, the optical light is coming from a rim-bright disk of radius 3.4 R_sun. For days 41-67, the optical source is a center-bright disk of radius 2.2 R_sun. Throughout the eruption, the colors remain essentially constant. We present 12 eclipse times during eruption plus five just after the eruption.
X-ray observations of active galactic nuclei (AGN) show variability on timescales ranging from a few hours up to a few days. Some of this variability may be associated with occultation events by clouds in the broad line region. In this work, we aim to model the spectral and polarization variability arising from X-ray obscuration events, serving as probes of the relativistic effects that dominate the emission from the innermost regions. We show that asymmetries can be clearly detected in the AGN spectra as the cloud is shading different parts of the accretion disc. We also show that these effects can be detected in the temporal evolution of the polarization degree ($P$) and the polarization position angle ($Psi$). The variations in $P$ and $Psi$ are highly dependent on the inclination of the system, the position of the primary source and its intrinsic polarization. Considering the disc-corona system only, for an inclination $theta = 30^circ$ (60$^circ$), $P$ increases up to $sim 20$% (30)%, in the 4-8 keV band, when the unpolarized primary source is obscured. However, after accounting for the contribution of parsec-scale material scattering the light in our line of sight (narrow-line region and molecular torus), the variability is smoothed out and the polarization degree can be reduced down to $sim 1$% (2%). Our results suggest that the study of eclipses in AGN with the next generation of X-ray spectral and polarimetric missions could provide unique information on the physics and structure of the innermost regions as well as of the parsec-scale material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا