Do you want to publish a course? Click here

A combinatorial bijection on di-sk trees

130   0   0.0 ( 0 )
 Added by Zhicong Lin
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

A di-sk tree is a rooted binary tree whose nodes are labeled by $oplus$ or $ominus$, and no node has the same label as its right child. The di-sk trees are in natural bijection with separable permutations. We construct a combinatorial bijection on di-sk trees proving the two quintuples $(LMAX,LMIN,DESB,iar,comp)$ and $(LMAX,LMIN,DESB,comp,iar)$ have the same distribution over separable permutations. Here for a permutation $pi$, $LMAX(pi)/LMIN(pi)$ is the set of values of the left-to-right maxima/minima of $pi$ and $DESB(pi)$ is the set of descent bottoms of $pi$, while $comp(pi)$ and $iar(pi)$ are respectively the number of components of $pi$ and the length of initial ascending run of $pi$. Interestingly, our bijection specializes to a bijection on $312$-avoiding permutations, which provides (up to the classical {em Knuth--Richards bijection}) an alternative approach to a result of Rubey (2016) that asserts the two triples $(LMAX,iar,comp)$ and $(LMAX,comp,iar)$ are equidistributed on $321$-avoiding permutations. Rubeys result is a symmetric extension of an equidistribution due to Adin--Bagno--Roichman, which implies the class of $321$-avoiding permutations with a prescribed number of components is Schur positive. Some equidistribution results for various statistics concerning tree traversal are presented in the end.



rate research

Read More

142 - Yidong Sun 2008
In this short note, we first present a simple bijection between binary trees and colored ternary trees and then derive a new identity related to generalized Catalan numbers.
103 - David Callan 2016
There is a bijection from Schroder paths to {4132, 4231}-avoiding permutations due to Bandlow, Egge, and Killpatrick that sends area to inversion number. Here we give a concise description of this bijection.
117 - David Callan 2016
We show that sequences A026737 and A111279 in The On-Line Encyclopedia of Integer Sequences are the same by giving a bijection between two classes of Grand Schroder paths.
454 - Loic Foissy 2007
We consider the combinatorial Dyson-Schwinger equation X=B^+(P(X)) in the non-commutative Connes-KreimerHopf algebra of planar rooted trees H, where B^+ is the operator of grafting on a root, and P a formal series. The unique solution X of this equation generates a graded subalgebra A_P ofH. We describe all the formal series P such that A_P is a Hopf subalgebra. We obtain in this way a 2-parameters family of Hopf subalgebras of H, organized into three isomorphism classes: a first one, restricted to a olynomial ring in one variable; a second one, restricted to the Hopf subalgebra of ladders, isomorphic to the Hopf algebra of quasi-symmetric functions; a last (infinite) one, which gives a non-commutative version of the Fa`a di Bruno Hopf algebra. By taking the quotient, the last classe gives an infinite set of embeddings of the Fa`a di Bruno algebra into the Connes-Kreimer Hopf algebra of rooted trees. Moreover, we give an embedding of the free Fa`a di Bruno Hopf algebra on D variables into a Hopf algebra of decorated rooted trees, togetherwith a non commutative version of this embedding.
151 - Heesung Shin 2008
In 1980, G. Kreweras gave a recursive bijection between forests and parking functions. In this paper we construct a nonrecursive bijection from forests onto parking functions, which answers a question raised by R. Stanley. As a by-product, we obtain a bijective proof of Gessel and Seos formula for lucky statistic on parking functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا