Do you want to publish a course? Click here

Valley Bosonic Stimulation of Exciton-Polaritons in a Monolayer Semiconductor

149   0   0.0 ( 0 )
 Added by Pasquale Cilibrizzi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The newly discovered valley degree of freedom (DOF) in atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) offers a promising platform to explore rich nonlinear physics, such as spinor Bose-Einstein condensate (BEC) and novel valleytronics applications. However, the critical nonlinear effect, such as valley polariton bosonic stimulation (BS), has long remained an unresolved challenge due to the generation of limited polariton ground state densities necessary to induce the stimulated scattering of polaritons in specific valleys. Here, we report, for the first time, the valley bosonic stimulation of exciton-polaritons via spin-valley locking in a WS2 monolayer microcavity. This is achieved by the resonant injection of valley polaritons at specific energy and wavevector, which allows spin-polarized polaritons to efficiently populate their ground state and induce a valley-dependent bosonic stimulation. As a result, we observe the nonlinear self-amplification of polariton emission from the valley-dependent ground state. Our finding paves the way for both fundamental study of valley polariton BEC physics and non-linear optoelectronic devices such as spin-dependent parametric oscillators and spin-lasers.



rate research

Read More

Two-dimensional transition metal dichalcogenide (TMD) semiconductors provide a unique possibility to access the electronic valley degree of freedom using polarized light, opening the way to valley information transfer between distant systems. Excitons with a well-defined valley index (or valley pseudospin) as well as superpositions of the exciton valley states can be created with light having circular and linear polarization, respectively. However, the generated excitons have short lifetimes (ps) and are also subject to the electron-hole exchange interaction leading to fast relaxation of the valley pseudospin and coherence. Here we show that control of these processes can be gained by embedding a monolayer of WSe$_2$ in an optical microcavity, where part-light-part-matter exciton-polaritons are formed in the strong light-matter coupling regime. We demonstrate the optical initialization of the valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than that of the excitons. We further control the evolution of the polariton valley coherence using a Faraday magnetic field to rotate the valley pseudospin by an angle defined by the exciton-cavity-mode detuning, which exceeds the rotation angle in the bare exciton. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.
The coupling between spin, charge, and lattice degrees of freedom plays an important role in a wide range of fundamental phenomena. Monolayer semiconducting transitional metal dichalcogenides have emerged as an outstanding platform for studying these coupling effects because they possess unique spin-valley locking physics for hosting rich excitonic species and the reduced screening for strong Coulomb interactions. Here, we report the observation of multiple valley phonons, phonons with momentum vectors pointing to the corners of the hexagonal Brillouin zone, and the resulting exciton complexes in the monolayer semiconductor WSe2. From Lande g-factor and polarization analyses of photoluminescence peaks, we find that these valley phonons lead to efficient intervalley scattering of quasi particles in both exciton formation and relaxation. This leads to a series of photoluminescence peaks as valley phonon replicas of dark trions. Using identified valley phonons, we also uncovered an intervalley exciton near charge neutrality, and extract its short-range electron-hole exchange interaction to be about 10 meV. Our work not only identifies a number of previously unknown 2D excitonic species, but also shows that monolayer WSe2 is a prime candidate for studying interactions between spin, pseudospin, and zone-edge phonons.
69 - M. Krol , K. Lekenta , R. Mirek 2018
Monolayer transition metal dichalcogenides, known for exhibiting strong excitonic resonances, constitute a very interesting and versatile platform for investigation of light-matter interactions. In this work we report on a strong coupling regime between excitons in monolayer WSe2 and photons confined in an open, voltage-tunable dielectric microcavity. The tunability of our system allows us to extend the exciton-polariton state over a wide energy range and, in particular, to bring the excitonic component of the lower polariton mode into resonance with other excitonic transitions in monolayer WSe2. With selective excitation of spin-polarized exciton-polaritons we demonstrate the valley polarization when the polaritons from the lower branch come into resonance with a bright trion state in monolayer WSe2 and valley depolarization when they are in resonance with a dark trion state.
We report magneto-absorption spectroscopy of gated WSe$_2$ monolayers in high magnetic fields up to 60~T. When doped with a 2D Fermi sea of mobile holes, well-resolved sequences of optical transitions are observed in both $sigma^pm$ circular polarizations, which unambiguously and separately indicate the number of filled Landau levels (LLs) in both $K$ and $K$ valleys. This reveals the interaction-enhanced valley Zeeman energy, which is found to be highly tunable with hole density $p$. We exploit this tunability to align the LLs in $K$ and $K$, and find that the 2D hole gas becomes unstable against small changes in LL filling and can spontaneously valley-polarize. These results cannot be understood within a single-particle picture, highlighting the importance of exchange interactions in determining the ground state of 2D carriers in monolayer semiconductors.
The emergence of two-dimensional crystals has revolutionized modern solid-state physics. From a fundamental point of view, the enhancement of charge carrier correlations has sparked enormous research activities in the transport- and quantum optics communities. One of the most intriguing effects, in this regard, is the bosonic condensation and spontaneous coherence of many-particle complexes. Here, we find compelling evidence of bosonic condensation of exciton-polaritons emerging from an atomically thin crystal of MoSe2 embedded in a dielectric microcavity under optical pumping. The formation of the condensate manifests itself in a sudden increase of luminescence intensity in a threshold-like manner, and a significant spin-polarizability in an externally applied magnetic field. Spatial coherence is mapped out via highly resolved real-space interferometry, revealing a spatially extended condensate. Our device represents a decisive step towards the implementation of coherent light-sources based on atomically thin crystals, as well as non-linear, valleytronic coherent devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا