Do you want to publish a course? Click here

Built-in Electric-Field-Control of Magnetic Coupling in van der Waals semiconductors

58   0   0.0 ( 0 )
 Added by Chengxi Huang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electrical control of magnetism in a two-dimensional (2D) semiconductor is of great interest for emerging nanoscale low-dissipation spintronic devices. Here, we propose a general approach of tuning magnetic coupling and anisotropy of a van der Waals (vdW) 2D magnetic semiconductor via a built-in electric field generated by the adsorption of superatomic ions. Using first-principles calculations, we predict a significant enhancement of ferromagnetic (FM) coupling and a great change of magnetic anisotropy in 2D semiconductors when they are sandwiched between superatomic cations and anions. The magnetic coupling is directly affected by the built-in electric field, which lifts the energy levels of mediated ligands orbitals and enhances the super-exchange interactions. These findings will be of interest for ionic gating controlled ferromagnets and magnetoelectronics based on vdW 2D semiconductors.



rate research

Read More

Properties of semiconductors are largely defined by crystal imperfections including native defects. Van der Waals (vdW) semiconductors, a newly emerged class of materials, are no exception: defects exist even in the purest materials and strongly affect their electrical, optical, magnetic, catalytic and sensing properties. However, unlike conventional semiconductors where energy levels of defects are well documented, they are experimentally unknown in even the best studied vdW semiconductors, impeding the understanding and utilization of these materials. Here, we directly evaluate deep levels and their chemical trends in the bandgap of MoS2, WS2 and their alloys by transient spectroscopic study. One of the deep levels is found to follow the conduction band minimum of each host, attributed to the native sulfur vacancy. A switchable, DX center - like deep level has also been identified, whose energy lines up instead on a fixed level across different hosts, explaining a persistent photoconductivity above 400K.
Manipulating quantum state via electrostatic gating has been intriguing for many model systems in nanoelectronics. When it comes to the question of controlling the electron spins, more specifically, the magnetism of a system, tuning with electric field has been proven to be elusive. Recently, magnetic layered semiconductors have attracted much attention due to their emerging new physical phenomena. However, challenges still remain in the demonstration of a gate controllable magnetism based on them. Here, we show that, via ionic gating, strong field effect can be observed in few-layered semiconducting Cr$_{2}$Ge$_{2}$Te$_{6}$ devices. At different gate doping, micro-area Kerr measurements in the studied devices demonstrate tunable magnetization loops below the Curie temperature, which is tentatively attributed to the moment re-balance in the spin-polarized band structure. Our findings of electric-field controlled magnetism in van der Waals magnets pave the way for potential applications in new generation magnetic memory storage, sensors, and spintronics.
Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. We present optical dispersion engineering in a superlattice structure comprised of alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate > 90 % narrowband absorption in < 4 nm active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in cm2 samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tunable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically-thin layers.
Exploring new parameter regimes to realize and control novel phases of matter has been a main theme in modern condensed matter physics research. The recent discovery of 2D magnetism in nearly freestanding monolayer atomic crystals has already led to observations of a number of novel magnetic phenomena absent in bulk counterparts. Such intricate interplays between magnetism and crystalline structures provide ample opportunities for exploring quantum phase transitions in this new 2D parameter regime. Here, using magnetic field and temperature dependent circularly polarized Raman spectroscopy of phonons and magnons, we map out the phase diagram of CrI3 that has been known to be a layered AFM in its 2D films and a FM in its 3D bulk. We, however, reveal a novel mixed state of layered AFM and FM in 3D CrI3 bulk crystals where the layered AFM survives in the surface layers and the FM appears in deeper bulk layers. We then show that the surface layered AFM transits into the FM at a critical magnetic field of 2 T, similar to what was found in the few layer case. Interestingly, concurrent with this magnetic phase transition, we discover a first-order structural phase transition that alters the crystallographic point group from C3i to C2h and thus, from a symmetry perspective, this monoclinic structural phase belongs to the 3D nematic order universality class. Our result not only unveils the complex single magnon behavior in 3D CrI3, but also settles down the puzzle of how CrI3 transits from a bulk FM to a thin layered AFM semiconductor, despite recent efforts in understanding the origin of layered AFM in CrI3 thin layer, and reveals the intimate relationship between the layered AFM-to-FM and the crystalline rhombohedral-to-monoclinic phase transitions. These findings further open up opportunities for future 2D magnet-based magneto-mechanical devices.
Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide (TMDC) heterostructures can be designed and built by assembling individual single-layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single layer WSe2 and MoS2 building blocks. We observe a large Stokes-like shift of ~100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment with spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN (h-BN) dielectric layers into the vdW gap. The generic nature of this interlayer coupling consequently provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا