No Arabic abstract
Predicting the future can significantly improve the safety of intelligent vehicles, which is a key component in autonomous driving. 3D point clouds accurately model 3D information of surrounding environment and are crucial for intelligent vehicles to perceive the scene. Therefore, prediction of 3D point clouds has great significance for intelligent vehicles, which can be utilized for numerous further applications. However, due to point clouds are unordered and unstructured, point cloud prediction is challenging and has not been deeply explored in current literature. In this paper, we propose a novel motion-based neural network named MoNet. The key idea of the proposed MoNet is to integrate motion features between two consecutive point clouds into the prediction pipeline. The introduction of motion features enables the model to more accurately capture the variations of motion information across frames and thus make better predictions for future motion. In addition, content features are introduced to model the spatial content of individual point clouds. A recurrent neural network named MotionRNN is proposed to capture the temporal correlations of both features. Besides, we propose an attention-based motion align module to address the problem of missing motion features in the inference pipeline. Extensive experiments on two large scale outdoor LiDAR datasets demonstrate the performance of the proposed MoNet. Moreover, we perform experiments on applications using the predicted point clouds and the results indicate the great application potential of the proposed method.
Fine-scale short-term cloud motion prediction is needed for several applications, including solar energy generation and satellite communications. In tropical regions such as Singapore, clouds are mostly formed by convection; they are very localized, and evolve quickly. We capture hemispherical images of the sky at regular intervals of time using ground-based cameras. They provide a high resolution and localized cloud images. We use two successive frames to compute optical flow and predict the future location of clouds. We achieve good prediction accuracy for a lead time of up to 5 minutes.
Features that are equivariant to a larger group of symmetries have been shown to be more discriminative and powerful in recent studies. However, higher-order equivariant features often come with an exponentially-growing computational cost. Furthermore, it remains relatively less explored how rotation-equivariant features can be leveraged to tackle 3D shape alignment tasks. While many past approaches have been based on either non-equivariant or invariant descriptors to align 3D shapes, we argue that such tasks may benefit greatly from an equivariant framework. In this paper, we propose an effective and practical SE(3) (3D translation and rotation) equivariant network for point cloud analysis that addresses both problems. First, we present SE(3) separable point convolution, a novel framework that breaks down the 6D convolution into two separable convolutional operators alternatively performed in the 3D Euclidean and SO(3) spaces. This significantly reduces the computational cost without compromising the performance. Second, we introduce an attention layer to effectively harness the expressiveness of the equivariant features. While jointly trained with the network, the attention layer implicitly derives the intrinsic local frame in the feature space and generates attention vectors that can be integrated into different alignment tasks. We evaluate our approach through extensive studies and visual interpretations. The empirical results demonstrate that our proposed model outperforms strong baselines in a variety of benchmarks
Pseudo-LiDAR point cloud interpolation is a novel and challenging task in the field of autonomous driving, which aims to address the frequency mismatching problem between camera and LiDAR. Previous works represent the 3D spatial motion relationship induced by a coarse 2D optical flow, and the quality of interpolated point clouds only depends on the supervision of depth maps. As a result, the generated point clouds suffer from inferior global distributions and local appearances. To solve the above problems, we propose a Pseudo-LiDAR point cloud interpolation network to generates temporally and spatially high-quality point cloud sequences. By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship. For the more comprehensive perception of the distribution of point cloud, we design a novel reconstruction loss function that implements the chamfer distance to supervise the generation of Pseudo-LiDAR point clouds in 3D space. In addition, we introduce a multi-modal deep aggregation module to facilitate the efficient fusion of texture and depth features. As the benefits of the improved motion representation, training loss function, and model structure, our approach gains significant improvements on the Pseudo-LiDAR point cloud interpolation task. The experimental results evaluated on KITTI dataset demonstrate the state-of-the-art performance of the proposed network, quantitatively and qualitatively.
LiDAR point cloud streams are usually sparse in time dimension, which is limited by hardware performance. Generally, the frame rates of mechanical LiDAR sensors are 10 to 20 Hz, which is much lower than other commonly used sensors like cameras. To overcome the temporal limitations of LiDAR sensors, a novel task named Point Cloud Frame Interpolation is studied in this paper. Given two consecutive point cloud frames, Point Cloud Frame Interpolation aims to generate intermediate frame(s) between them. To achieve that, we propose a novel framework, namely Point Cloud Frame Interpolation Network (PointINet). Based on the proposed method, the low frame rate point cloud streams can be upsampled to higher frame rates. We start by estimating bi-directional 3D scene flow between the two point clouds and then warp them to the given time step based on the 3D scene flow. To fuse the two warped frames and generate intermediate point cloud(s), we propose a novel learning-based points fusion module, which simultaneously takes two warped point clouds into consideration. We design both quantitative and qualitative experiments to evaluate the performance of the point cloud frame interpolation method and extensive experiments on two large scale outdoor LiDAR datasets demonstrate the effectiveness of the proposed PointINet. Our code is available at https://github.com/ispc-lab/PointINet.git.
In this paper, we propose an effective point cloud generation method, which can generate multi-resolution point clouds of the same shape from a latent vector. Specifically, we develop a novel progressive deconvolution network with the learning-based bilateral interpolation. The learning-based bilateral interpolation is performed in the spatial and feature spaces of point clouds so that local geometric structure information of point clouds can be exploited. Starting from the low-resolution point clouds, with the bilateral interpolation and max-pooling operations, the deconvolution network can progressively output high-resolution local and global feature maps. By concatenating different resolutions of local and global feature maps, we employ the multi-layer perceptron as the generation network to generate multi-resolution point clouds. In order to keep the shapes of different resolutions of point clouds consistent, we propose a shape-preserving adversarial loss to train the point cloud deconvolution generation network. Experimental results demonstrate the effectiveness of our proposed method.