Do you want to publish a course? Click here

Learning-based attacks in Cyber-Physical Systems: Exploration, Detection, and Control Cost trade-offs

99   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the problem of learning-based attacks in linear systems, where the communication channel between the controller and the plant can be hijacked by a malicious attacker. We assume the attacker learns the dynamics of the system from observations, then overrides the controllers actuation signal, while mimicking legitimate operation by providing fictitious sensor readings to the controller. On the other hand, the controller is on a lookout to detect the presence of the attacker and tries to enhance the detection performance by carefully crafting its control signals. We study the trade-offs between the information acquired by the attacker from observations, the detection capabilities of the controller, and the control cost. Specifically, we provide tight upper and lower bounds on the expected $epsilon$-deception time, namely the time required by the controller to make a decision regarding the presence of an attacker with confidence at least $(1-epsilonlog(1/epsilon))$. We then show a probabilistic lower bound on the time that must be spent by the attacker learning the system, in order for the controller to have a given expected $epsilon$-deception time. We show that this bound is also order optimal, in the sense that if the attacker satisfies it, then there exists a learning algorithm with the given order expected deception time. Finally, we show a lower bound on the expected energy expenditure required to guarantee detection with confidence at least $1-epsilon log(1/epsilon)$.



rate research

Read More

We introduce the problem of learning-based attacks in a simple abstraction of cyber-physical systems---the case of a discrete-time, linear, time-invariant plant that may be subject to an attack that overrides the sensor readings and the controller actions. The attacker attempts to learn the dynamics of the plant and subsequently override the controllers actuation signal, to destroy the plant without being detected. The attacker can feed fictitious sensor readings to the controller using its estimate of the plant dynamics and mimic the legitimate plant operation. The controller, on the other hand, is constantly on the lookout for an attack; once the controller detects an attack, it immediately shuts the plant off. In the case of scalar plants, we derive an upper bound on the attackers deception probability for any measurable control policy when the attacker uses an arbitrary learning algorithm to estimate the system dynamics. We then derive lower bounds for the attackers deception probability for both scalar and vector plants by assuming a specific authentication test that inspects the empirical variance of the system disturbance. We also show how the controller can improve the security of the system by superimposing a carefully crafted privacy-enhancing signal on top of the nominal control policy. Finally, for nonlinear scalar dynamics that belong to the Reproducing Kernel Hilbert Space (RKHS), we investigate the performance of attacks based on nonlinear Gaussian-processes (GP) learning algorithms.
Cyber-Physical Systems (CPS) are present in many settings addressing a myriad of purposes. Examples are Internet-of-Things (IoT) or sensing software embedded in appliances or even specialised meters that measure and respond to electricity demands in smart grids. Due to their pervasive nature, they are usually chosen as recipients for larger scope cyber-security attacks. Those promote system-wide disruptions and are directed towards one key aspect such as confidentiality, integrity, availability or a combination of those characteristics. Our paper focuses on a particular and distressing attack where coordinated malware infected IoT units are maliciously employed to synchronously turn on or off high-wattage appliances, affecting the grids primary control management. Our model could be extended to larger (smart) grids, Active Buildings as well as similar infrastructures. Our approach models Coordinated Load-Changing Attacks (CLCA) also referred as GridLock or BlackIoT, against a theoretical power grid, containing various types of power plants. It employs Continuous-Time Markov Chains where elements such as Power Plants and Botnets are modelled under normal or attack situations to evaluate the effect of CLCA in power reliant infrastructures. We showcase our modelling approach in the scenario of a power supplier (e.g. power plant) being targeted by a botnet. We demonstrate how our modelling approach can quantify the impact of a botnet attack and be abstracted for any CPS system involving power load management in a smart grid. Our results show that by prioritising the type of power-plants, the impact of the attack may change: in particular, we find the most impacting attack times and show how different strategies impact their success. We also find the best power generator to use depending on the current demand and strength of attack.
In this paper a novel approach to co-design controller and attack detector for nonlinear cyber-physical systems affected by false data injection (FDI) attack is proposed. We augment the model predictive controller with an additional constraint requiring the future---in some steps ahead---trajectory of the system to remain in some time-invariant neighborhood of a properly designed reference trajectory. At any sampling time, we compare the real-time trajectory of the system with the designed reference trajectory, and construct a residual. The residual is then used in a nonparametric cumulative sum (CUSUM) anomaly detector to uncover FDI attacks on input and measurement channels. The effectiveness of the proposed approach is tested with a nonlinear model regarding level control of coupled tanks.
162 - Yixuan Wang , Chao Huang , Qi Zhu 2020
Neural networks have been increasingly applied for control in learning-enabled cyber-physical systems (LE-CPSs) and demonstrated great promises in improving system performance and efficiency, as well as reducing the need for complex physical models. However, the lack of safety guarantees for such neural network based controllers has significantly impeded their adoption in safety-critical CPSs. In this work, we propose a controller adaptation approach that automatically switches among multiple controllers, including neural network controllers, to guarantee system safety and improve energy efficiency. Our approach includes two key components based on formal methods and machine learning. First, we approximate each controller with a Bernstein-polynomial based hybrid system model under bounded disturbance, and compute a safe invariant set for each controller based on its corresponding hybrid system. Intuitively, the invariant set of a controller defines the state space where the system can always remain safe under its control. The union of the controllers invariants sets then define a safe adaptation space that is larger than (or equal to) that of each controller. Second, we develop a deep reinforcement learning method to learn a controller switching strategy for reducing the control/actuation energy cost, while with the help of a safety guard rule, ensuring that the system stays within the safe space. Experiments on a linear adaptive cruise control system and a non-linear Van der Pols oscillator demonstrate the effectiveness of our approach on energy saving and safety enhancement.
The distributed cooperative controllers for inverter-based systems rely on communication networks that make them vulnerable to cyber anomalies. In addition, the distortion effects of such anomalies may also propagate throughout inverter-based cyber-physical systems due to the cooperative cyber layer. In this paper, an intelligent anomaly mitigation technique for such systems is presented utilizing data driven artificial intelligence tools that employ artificial neural networks. The proposed technique is implemented in secondary voltage control of distributed cooperative control-based microgrid, and results are validated by comparison with existing distributed secondary control and real-time simulations on real-time simulator OPAL-RT.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا