No Arabic abstract
Ultra Long Period Cepheids (ULPs) are pulsating variable stars with a period longer than 80d and have been hypothesized to be the extension of the Classical Cepheids (CCs) at higher masses and luminosities. If confirmed as standard candles, their intrinsic luminosities, 1 to 3 mag brighter than typical CCs, would allow to reach the Hubble flow and, in turn, to determine the Hubble constant, H_0, in one step, avoiding the uncertainties associated with the calibration of primary and secondary indicators. To investigate the accuracy of ULPs as cosmological standard candles, we first collect all the ULPs known in the literature. The resulting sample includes 63 objects with a very large metallicity spread with 12 + log([O/H]) ranging from 7.2 to 9.2 dex. The analysis of their properties in the VI period-Wesenheit plane and in the color-magnitude diagram (CMD) supports the hypothesis that the ULPs are the extension of CCs at longer periods, higher masses and luminosities, even if, additional accurate and homogeneous data and a devoted theoretical scenario are needed to get firm conclusions. Finally, the three M31 ULPs, 8-0326, 8-1498 and H42, are investigated in more detail. For 8-1498 and H42, we cannot confirm their nature as ULPs, due to the inconsistency between their position in the CMD and the measured periods. For 8-0326, the light curve model fitting technique applied to the available time-series data allows us to constrain its intrinsic stellar parameters, distance and reddening.
The cosmological distance ladder crucially depends on classical Cepheids (with P=3-80 days), which are primary distance indicators up to 33 Mpc. Within this volume, very few SNe Ia have been calibrated through classical Cepheids, with uncertainty related to the non-linearity and the metallicity dependence of their period-luminosity (PL) relation. Although a general consensus on these effects is still not achieved, classical Cepheids remain the most used primary distance indicators. A possible extension of these standard candles to further distances would be important. In this context, a very promising new tool is represented by the ultra-long period (ULP) Cepheids (P geq 80 days), recently identified in star-forming galaxies. Only a small number of ULP Cepheids have been discovered so far. Here we present and analyse the properties of an updated sample of 37 ULP Cepheids observed in galaxies within a very large metallicity range of 12+log(O/H) from ~7.2 to 9.2 dex. We find that their location in the colour(V-I)-magnitude diagram as well as their Wesenheit (V-I) index-period (WP) relation suggests that they are the counterparts at high luminosity of the shorter-period (P leq 80 days) classical Cepheids. However, a complete pulsation and evolutionary theoretical scenario is needed to properly interpret the true nature of these objects. We do not confirm the flattening in the studied WP relation suggested by Bird et al. (2009). Using the whole sample, we find that ULP Cepheids lie around a relation similar to that of the LMC, although with a large spread (~0.4 mag).
We present a new catalogue of ~2,400 optically selected quasars with spectroscopic redshifts and X-ray observations from either Chandra or XMM-Newton. The sample can be used to investigate the non-linear relation between the UV and X-ray luminosity of quasars, and to build a Hubble diagram up to redshift z~7.5. We selected sources that are neither reddened by dust in the optical/UV nor obscured by gas in the X-rays, and whose X-ray fluxes are free from flux-limit related biases. After checking for any possible systematics, we confirm, in agreement with our previous works, that (i) the X-ray to UV relation provides distance estimates matching those from supernovae up to z~1.5, and (ii) its slope shows no redshift evolution up to z~5. We provide a full description of the methodology for testing cosmological models, further supporting a trend whereby the Hubble diagram of quasars is well reproduced by the standard flat $Lambda$CDM model up to z~1.5-2, but strong deviations emerge at higher redshifts. Since we have minimized all non-negligible systematic effects, and proven the stability of the $L_{rm X}-L_{rm UV}$ relation at high redshifts, we conclude that an evolution of the expansion rate of the Universe should be considered as a possible explanation for the observed deviation, rather than some systematic (redshift-dependent) effect associated with high-redshift quasars.
As soon as it was realized that long GRBs lie at cosmological distances, attempts have been made to use them as cosmological probes. Besides their use as lighthouses, a task that presents mainly the technological challenge of a rapid deep high resolution follow-up, researchers attempted to find the Holy Grail: a way to create a standard candle from GRB observables. We discuss here the attempts and the discovery of the Ghirlanda correlation, to date the best method to standardize the GRB candle. Together with discussing the promises of this method, we will underline the open issues, the required calibrations and how to understand them and keep them under control. Even though GRB cosmology is a field in its infancy, ongoing work and studies will clarify soon if and how GRBs will be able to keep up to the promises.
Light curves of the accreting white dwarf pulsator GW Librae spanning a 7.5 month period in 2017 were obtained as part of the Next Generation Transit Survey. This data set comprises 787 hours of photometry from 148 clear nights, allowing the behaviour of the long (hours) and short period (20min) modulation signals to be tracked from night to night over a much longer observing baseline than has been previously achieved. The long period modulations intermittently detected in previous observations of GW Lib are found to be a persistent feature, evolving between states with periods ~83min and 2-4h on time-scales of several days. The 20min signal is found to have a broadly stable amplitude and frequency for the duration of the campaign, but the previously noted phase instability is confirmed. Ultraviolet observations obtained with the Cosmic Origin Spectrograph onboard the Hubble Space Telescope constrain the ultraviolet-to-optical flux ratio to ~5 for the 4h modulation, and <=1 for the 20min period, with caveats introduced by non-simultaneous observations. These results add further observational evidence that these enigmatic signals must originate from the white dwarf, highlighting our continued gap in theoretical understanding of the mechanisms that drive them.
We discuss the largest and most homogeneous spectroscopic dataset of field RR Lyrae variables (RRLs) available to date. We estimated abundances using both high-resolution and low-resolution ({Delta S} method) spectra for fundamental (RRab) and first overtone (RRc) RRLs. The iron abundances for 7,941 RRLs were supplemented with similar literature estimates available, ending up with 9,015 RRLs (6,150 RRab, 2,865 RRc). The metallicity distribution shows a mean value of <[Fe/H]> = -1.51pm0.01, and {sigma}(standard deviation)= 0.41 dex with a long metal-poor tail approaching [Fe/H] = -3 and a sharp metal-rich tail approaching solar iron abundance. The RRab variables are more metal-rich (<[Fe/H]>ab = -1.48pm0.01, {sigma} = 0.41 dex) than RRc variables (<[Fe/H]>c = -1.58pm0.01, {sigma} = 0.40 dex). The relative fraction of RRab variables in the Bailey diagram (visual amplitude vs period) located along the short-period (more metal-rich) and the long-period (more metal-poor) sequences are 80% and 20%, while RRc variables display an opposite trend, namely 30% and 70%. We found that the pulsation period of both RRab and RRc variables steadily decreases when moving from the metal-poor to the metal-rich regime. The visual amplitude shows the same trend, but RRc amplitudes are almost two times more sensitive than RRab amplitudes to metallicity. We also investigated the dependence of the population ratio (Nc/Ntot) of field RRLs on the metallicity and we found that the distribution is more complex than in globular clusters. The population ratio steadily increases from ~0.25 to ~0.36 in the metal-poor regime, it decreases from ~0.36 to ~0.18 for -1.8 < [Fe/H] < -0.9 and it increases to a value of ~0.3 approaching solar iron abundance.