Do you want to publish a course? Click here

Zero Queueing for Multi-Server Jobs

104   0   0.0 ( 0 )
 Added by Weina Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Cloud computing today is dominated by multi-server jobs. These are jobs that request multiple servers simultaneously and hold onto all of these servers for the duration of the job. Multi-server jobs add a lot of complexity to the traditional one-job-per-server model: an arrival might not fit into the available servers and might have to queue, blocking later arrivals and leaving servers idle. From a queueing perspective, almost nothing is understood about multi-server job queueing systems; even understanding the exact stability region is a very hard problem. In this paper, we investigate a multi-server job queueing model under scaling regimes where the number of servers in the system grows. Specifically, we consider a system with multiple classes of jobs, where jobs from different classes can request different numbers of servers and have different service time distributions, and jobs are served in first-come-first-served order. The multi-server job model opens up new scaling regimes where both the number of servers that a job needs and the system load scale with the total number of servers. Within these scaling regimes, we derive the first results on stability, queueing probability, and the transient analysis of the number of jobs in the system for each class. In particular we derive sufficient conditions for zero queueing. Our analysis introduces a novel way of extracting information from the Lyapunov drift, which can be applicable to a broader scope of problems in queueing systems.



rate research

Read More

91 - Yige Hong , Weina Wang 2021
Multiserver jobs, which are jobs that occupy multiple servers simultaneously during service, are prevalent in todays computing clusters. But little is known about the delay performance of systems with multiserver jobs. We consider queueing models for multiserver jobs in a scaling regime where the total number of servers in the system becomes large and meanwhile both the system load and the number of servers that a job needs scale with the total number of servers. Prior work has derived upper bounds on the queueing probability in this scaling regime. However, without proper lower bounds, the existing results cannot be used to differentiate between policies. In this paper, we study the delay performance by establishing sharp bounds on the mean waiting time of multiserver jobs, where the waiting time of a job is the time spent in queueing rather than in service. We first consider the commonly used First-Come-First-Serve (FCFS) policy and characterize the exact order of its mean waiting time. We then prove a lower bound on the mean waiting time of all policies, and demonstrate that there is an order gap between this lower bound and the mean waiting time under FCFS. We finally complement the lower bound with an achievability result: we show that under a priority policy that we call P-Priority, the mean waiting time achieves the order of the lower bound. This achievability result implies the tightness of the lower bound, the asymptotic optimality of P-Priority, and the strict suboptimality of FCFS.
With the rapid advance of information technology, network systems have become increasingly complex and hence the underlying system dynamics are often unknown or difficult to characterize. Finding a good network control policy is of significant importance to achieve desirable network performance (e.g., high throughput or low delay). In this work, we consider using model-based reinforcement learning (RL) to learn the optimal control policy for queueing networks so that the average job delay (or equivalently the average queue backlog) is minimized. Traditional approaches in RL, however, cannot handle the unbounded state spaces of the network control problem. To overcome this difficulty, we propose a new algorithm, called Reinforcement Learning for Queueing Networks (RL-QN), which applies model-based RL methods over a finite subset of the state space, while applying a known stabilizing policy for the rest of the states. We establish that the average queue backlog under RL-QN with an appropriately constructed subset can be arbitrarily close to the optimal result. We evaluate RL-QN in dynamic server allocation, routing and switching problems. Simulation results show that RL-QN minimizes the average queue backlog effectively.
Blockchain has many benefits including decentralization, availability, persistency, consistency, anonymity, auditability and accountability, and it also covers a wide spectrum of applications ranging from cryptocurrency, financial services, reputation system, Internet of Things, sharing economy to public and social services. Not only may blockchain be regarded as a by-product of Bitcoin cryptocurrency systems, but also it is a type of distributed ledger technology through using a trustworthy, decentralized log of totally ordered transactions. By summarizing the literature of blockchain, it is found that more papers focus on engineering implementation and realization, while little work has been done on basic theory, for example, mathematical models (Markov processes, queueing theory and game models), performance analysis and optimization of blockchain systems. In this paper, we develop queueing theory of blockchain systems and provide system performance evaluation. To do this, we design a Markovian batch-service queueing system with two different service stages, while the two stages are suitable to well express the mining process in the miners pool and the building of a new blockchain. By using the matrix-geometric solution, we obtain a system stable condition and express three key performance measures: (a) The number of transactions in the queue, (b) the number of transactions in a block, and (c) the transaction-confirmation time. Finally, We use numerical examples to verify computability of our theoretical results. Although our queueing model is simple under exponential or Poisson assumptions, our analytic method will open a series of potentially promising research in queueing theory of blockchain systems.
This paper describes two basic queueing models of service platforms in digital sharing economy by means of two different policies of platform matching information. We show that the two queueing models of service platforms can be expressed as the level-independent quasi birth-and-death (QBD) processes. Using the proposed QBD processes, we provide a detailed analysis for the two queueing models of service platforms, including the system stability, the average stationary numbers of seekers and of idle owners, the expected sojourn time of an arriving seeker, and the expected profits for both the service platform and each owner. Finally, numerical examples are employed to verify our theoretical results, and demonstrate how the performance measures of service platforms are influenced by some key system parameters. We believe that the methodology and results developed in this paper not only can be applied to develop a broad class of queuing models of service platforms, but also will open a series of promising innovative research on performance evaluation, optimal control and queueing-game of service platforms and digital sharing economy.
Cloud computing delivers value to users by facilitating their access to computing capacity in periods when their need arises. An approach is to provide both on-demand and spot services on shared servers. The former allows users to access servers on demand at a fixed price and users occupy different periods of servers. The latter allows users to bid for the remaining unoccupied periods via dynamic pricing; however, without appropriate design, such periods may be arbitrarily small since on-demand users arrive randomly. This is also the current service model adopted by Amazon Elastic Cloud Compute. In this paper, we provide the first integral framework for sharing the time of servers between on-demand and spot services while optimally pricing spot instances. It guarantees that on-demand users can get served quickly while spot users can stably utilize servers for a properly long period once accepted, which is a key feature to make both on-demand and spot services accessible. Simulation results show that, by complementing the on-demand market with a spot market, a cloud provider can improve revenue by up to 464.7%. The framework is designed under assumptions which are met in real environments. It is a new tool that cloud operators can use to quantify the advantage of a hybrid spot and on-demand service, eventually making the case for operating such service model in their own infrastructures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا