Do you want to publish a course? Click here

Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration

263   0   0.0 ( 0 )
 Added by Zin Lin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present full-Maxwell topology-optimization design of a single-piece multlayer metalens, about 10 wavelengths~$lambda$ in thickness, that simultaneously focuses over a $60^circ$ angular range and a 23% spectral bandwidth without suffering chromatic or angular aberration, a plan-achromat. At all angles and frequencies it achieves diffraction-limited focusing (Strehl ratio $> 0.8$) and absolute focusing efficiency $> 50$%. Both 2D and 3D axi-symmetric designs are presented, optimized over $sim 10^5$ degrees of freedom. We also demonstrate shortening the lens-to-sensor distance while producing the same image as for a longer virtual focal length and maintaining plan-achromaticity. These proof-of-concept designs demonstrate the ultra-compact multi-functionality that can be achieved by exploiting the full wave physics of subwavelength designs, and motivate future work on design and fabrication of multi-layer meta-optics.



rate research

Read More

Metasurface optics have demonstrated vast potential for implementing traditional optical components in an ultra-compact and lightweight form factor. Metasurface lenses, also called metalenses, however, suffer from severe chromatic aberrations, posing serious limitations on their practical use. Existing approaches for circumventing such aberrations via dispersion engineering are limited to small apertures and often entails multiple scatterers per unit cell with small feature sizes. Here, we present an alternative technique to mitigate chromatic aberration and demonstrate high-quality, full-color imaging using extended depth of focus (EDOF) metalenses and computational reconstruction. Previous EDOF metalenses relied on cubic phase masks that induced asymmetric artifacts in images, whereas here we demonstrate the use of symmetric phase masks that can improve subsequent image quality, including logarithmic-aspherical, and shifted axicon masks. Our work will inspire further development in achromatic metalenses beyond dispersion engineering and open new research avenues on hybrid optical-digital metasurface systems.
192 - Rujiang Li , Bin Zheng , Xiao Lin 2016
The energy-momentum dispersion relation is a fundamental property of plasmonic systems. In this paper, we show that the method of dispersion engineering can be used for the design of ultra-compact graphene-based superscatterers. Based on the Bohr model, the dispersion relation of the equivalent planar waveguide is engineered to enhance the scattering cross section of a dielectric cylinder. Bohr conditions with different orders are fulfilled in multiple dispersion curves at the same resonant frequency. Thus the resonance peaks from the first and second order scattering terms are overlapped in the deepsubwavelength scale by delicately tuning the gap thickness between two graphene layers. Using this ultra-compact graphene-based superscatterer, the scattering cross section of the dielectric cylinder can be enhanced by five orders of magnitude.
Thick biological tissues give rise to not only the scattering of incoming light waves, but also aberrations of the remaining unscattered waves. Due to the inability of existing optical imaging methodologies to overcome both of these problems simultaneously, imaging depth at the sub- micron spatial resolution has remained extremely shallow. Here we present an experimental approach for identifying and eliminating aberrations even in the presence of strong multiple light scattering. For time-gated complex-field maps of reflected waves taken over various illumination channels, we identify two sets of aberration correction maps, one for the illumination path and one for the reflection path, that can preferentially accumulate the unscattered signal waves over the multiple-scattered waves. By performing closed-loop optimization for forward and phase- conjugation processes, we demonstrated a spatial resolution of 600 nm up to the unprecedented imaging depth of 7 scattering mean free paths.
Recent advancements in computational inverse design have begun to reshape the landscape of structures and techniques available to nanophotonics. Here, we outline a cross section of key developments at the intersection of these two fields: moving from a recap of foundational results to motivation of emerging applications in nonlinear, topological, near-field and on-chip optics.
The development of inverse design, where computational optimization techniques are used to design devices based on certain specifications, has led to the discovery of many compact, non-intuitive structures with superior performance. Among various methods, large-scale, gradient-based optimization techniques have been one of the most important ways to design a structure containing a vast number of degrees of freedom. These techniques are made possible by the adjoint method, in which the gradient of an objective function with respect to all design degrees of freedom can be computed using only two full-field simulations. However, this approach has so far mostly been applied to linear photonic devices. Here, we present an extension of this method to modeling nonlinear devices in the frequency domain, with the nonlinear response directly included in the gradient computation. As illustrations, we use the method to devise compact photonic switches in a Kerr nonlinear material, in which low-power and high-power pulses are routed in different directions. Our technique may lead to the development of novel compact nonlinear photonic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا