No Arabic abstract
The room temperature thermal diffusivity of high T$_c$ materials is dominated by phonons. This allows the scattering of phonons by electrons to be discerned. We argue that the measured strength of this scattering suggests a converse Planckian scattering of electrons by phonons across the room temperature phase diagram of these materials. Consistent with this conclusion, the temperature derivative of the resistivity of strongly overdoped cuprates is noted to show a kink at a little below 200 K that we argue should be understood as the onset of a high temperature Planckian $T$-linear scattering of electrons by classical phonons. This kink continuously disappears towards optimal doping, even while strong scattering of phonons by electrons remains visible in the thermal diffusivity, sharpening the long-standing puzzle of the lack of a feature in the $T$-linear resistivity at optimal doping associated to onset of phonon scattering.
Could it be that the matter from the electrons in high Tc superconductors is of a radically new kind that may be called many body entangled compressible quantum matter? Much of this text is intended as an easy to read tutorial, explaining recent theoretical advances that have been unfolding at the cross roads of condensed matter- and string theory, black hole physics as well as quantum information theory. These developments suggest that the physics of such matter may be governed by surprisingly simple principles. My real objective is to present an experimental strategy to test critically whether these principles are actually at work, revolving around the famous linear resistivity characterizing the strange metal phase. The theory suggests a very simple explanation of this unreasonably simple behavior that is actually directly linked to remarkable results from the study of the quark gluon plasma formed at the heavy ion colliders: the fast hydrodynamization and the minimal viscosity. This leads to high quality predictions for experiment: the momentum relaxation rate governing the resistivity relates directly to the electronic entropy, while at low temperatures the electron fluid should become unviscous to a degree that turbulent flows can develop even on the nanometre scale.
We review the appearance of the Planckian time $tau_text{Pl} = hbar/(k_B T)$ in both conventional and unconventional metals. We give a pedagogical discussion of the various different timescales (quasiparticle, transport, many-body) that characterize metals, emphasizing conditions under which these times are the same or different. Throughout, we have attempted to clear up aspects of the problem that had been confusing us, in the hope that this helps the reader as well. We discuss the possibility of a Planckian bound on dissipation from both a quasiparticle and a many-body perspective. Planckian quasiparticles can arise naturally from a combination of inelastic scattering and mass renormalization. Many-body dynamics, on the other hand, is constrained by the basic time- and length- scales of local thermalization.
Thermal transport is less appreciated in probing quantum materials in comparison to electrical transport. This article aims to show the pivotal role that thermal transport may play in understanding quantum materials: the longitudinal thermal transport reflects the itinerant quasiparticles even in an electrical insulating phase, while the transverse thermal transport such as thermal Hall and Nernst effect are tightly linked to nontrivial topology. We discuss three types of examples: quantum spin liquids where thermal transport identifies its existence, superconductors where thermal transport reveals the superconducting gap structure, and topological Weyl semimetals where anomalous Nernst effect is a consequence of nontrivial Berry curvature. We conclude with an outlook of the unique insights thermal transport may offer to probe a much broader category of quantum phenomena.
We explain recent challenging experimental observations of universal scattering rate related to the linear-temperature resistivity exhibited by a large corps of both strongly correlated Fermi systems and conventional metals. We show that the observed scattering rate in strongly correlated Fermi systems like heavy fermion metals and high-$T_c$ superconductors stems from phonon contribution that induce the linear temperature dependence of a resistivity. The above phonons are formed by the presence of flat band, resulting from the topological fermion condensation quantum phase transition (FCQPT). We emphasize that so - called Planckian limit, widely used to explain the above universal scattering rate, may occur accidentally as in conventional metals its experimental manifestations (e.g. scattering rate at room and higher temperatures) are indistinguishable from those generated by the well-know phonons being the classic lattice excitations. Our results are in good agreement with experimental data and show convincingly that the topological FCQPT can be viewed as the universal agent explaining the very unusual physics of strongly correlated Fermi systems.
Materials with strongly-correlated electrons exhibit interesting phenomena such as metal-insulator transitions and high-temperature superconductivity. In stark contrast to ordinary metals, electron transport in these materials is thought to resemble the flow of viscous fluids. Despite their differences, it is predicted that transport in both, conventional and correlated materials, is fundamentally limited by the uncertainty principle applied to energy dissipation. Here we discover hydrodynamic electron flow in the Weyl-semimetal tungsten phosphide (WP2). Using thermal and magneto-electric transport experiments, we observe the transition from a conventional metallic state, at higher temperatures, to a hydrodynamic electron fluid below 20 K. The hydrodynamic regime is characterized by a viscosity-induced dependence of the electrical resistivity on the square of the channel width, and by the observation of a strong violation of the Wiedemann-Franz law. From magneto-hydrodynamic experiments and complementary Hall measurements, the relaxation times for momentum and thermal energy dissipating processes are extracted. Following the uncertainty principle, both are limited by the Planckian bound of dissipation, independent of the underlying transport regime.