Do you want to publish a course? Click here

Methane as a dominant absorber in the habitable-zone sub-Neptune K2-18 b

263   0   0.0 ( 0 )
 Added by Bruno B\\'ezard
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In their Letter, Tsiaras et al.$^1$ reported the detection of water vapour in the atmosphere of K2-18 b, an exoplanet of 7 to 10 Earth masses located in the habitable zone of an M-dwarf star. The detection is based on an absorption feature seen at 1.4 $mu$m in observations of the transiting exoplanet with the Hubble Space Telescope/Wide Field Camera 3. We have simulated the mean temperature structure and composition of K2-18b using a radiative-convective equilibrium model$^{2-4}$ and we present here the corresponding transit spectroscopy calculations. We argue that the reported absorption is most likely due to methane, a gas expected to be abundant in the hydrogen-helium atmosphere of cold sub-Neptunes. More generally, we show that the 1.4-$mu$m absorption seen in transit spectra is not diagnostic of the presence of water vapour for sub-Neptunes having an effective temperature less than 600 K and that water vapour dominates over methane at this wavelength only at larger temperatures.



rate research

Read More

Results from the Kepler mission indicate that the occurrence rate of small planets ($<3$ $R_oplus$) in the habitable zone of nearby low-mass stars may be as high as 80%. Despite this abundance, probing the conditions and atmospheric properties on any habitable-zone planet is extremely difficult and has remained elusive to date. Here, we report the detection of water vapor and the likely presence of liquid and icy water clouds in the atmosphere of the $2.6$ $R_oplus$ habitable-zone planet K2-18b. The simultaneous detection of water vapor and clouds in the mid-atmosphere of K2-18b is particularly intriguing because K2-18b receives virtually the same amount of total insolation from its host star ($1368_{-107}^{+114}$ W m$^{-2}$) as the Earth receives from the Sun (1361 W m$^{-2}$), resulting in the right conditions for water vapor to condense and explain the detected clouds. In this study, we observed nine transits of K2-18b using HST/WFC3 in order to achieve the necessary sensitivity to detect the water vapor, and we supplement this data set with Spitzer and K2 observations to obtain a broader wavelength coverage. While the thick hydrogen-dominated envelope we detect on K2-18b means that the planet is not a true Earth analog, our observations demonstrate that low-mass habitable-zone planets with the right conditions for liquid water are accessible with state-of-the-art telescopes.
We validate the discovery of a 2 Earth radii sub-Neptune-size planet around the nearby high proper motion M2.5-dwarf G 9-40 (EPIC 212048748), using high-precision near-infrared (NIR) radial velocity (RV) observations with the Habitable-zone Planet Finder (HPF), precision diffuser-assisted ground-based photometry with a custom narrow-band photometric filter, and adaptive optics imaging. At a distance of $d=27.9mathrm{pc}$, G 9-40b is the second closest transiting planet discovered by K2 to date. The planets large transit depth ($sim$3500ppm), combined with the proximity and brightness of the host star at NIR wavelengths (J=10, K=9.2) makes G 9-40b one of the most favorable sub-Neptune-sized planet orbiting an M-dwarf for transmission spectroscopy with JWST, ARIEL, and the upcoming Extremely Large Telescopes. The star is relatively inactive with a rotation period of $sim$29 days determined from the K2 photometry. To estimate spectroscopic stellar parameters, we describe our implementation of an empirical spectral matching algorithm using the high-resolution NIR HPF spectra. Using this algorithm, we obtain an effective temperature of $T_{mathrm{eff}}=3404pm73$K, and metallicity of $mathrm{[Fe/H]}=-0.08pm0.13$. Our RVs, when coupled with the orbital parameters derived from the transit photometry, exclude planet masses above $11.7 M_oplus$ with 99.7% confidence assuming a circular orbit. From its radius, we predict a mass of $M=5.0^{+3.8}_{-1.9} M_oplus$ and an RV semi-amplitude of $K=4.1^{+3.1}_{-1.6}mathrm{m:s^{-1}}$, making its mass measurable with current RV facilities. We urge further RV follow-up observations to precisely measure its mass, to enable precise transmission spectroscopic measurements in the future.
We confirm the planetary nature of TOI-532b, using a combination of precise near-infrared radial velocities with the Habitable-zone Planet Finder, TESS light curves, ground based photometric follow-up, and high-contrast imaging. TOI-532 is a faint (J$sim 11.5$) metal-rich M dwarf with Teff = $3957pm69$ K and [Fe/H] = $0.38pm0.04$; it hosts a transiting gaseous planet with a period of $sim 2.3$ days. Joint fitting of the radial velocities with the TESS and ground-based transits reveal a planet with radius of $5.82pm0.19$ R$_{oplus}$, and a mass of $61.5_{-9.3}^{+9.7}$ M$_{oplus}$. TOI-532b is the largest and most massive super Neptune detected around an M dwarf with both mass and radius measurements, and it bridges the gap between the Neptune-sized planets and the heavier Jovian planets known to orbit M dwarfs. It also follows the previously noted trend between gas giants and host star metallicity for M dwarf planets. In addition, it is situated at the edge of the Neptune desert in the Radius--Insolation plane, helping place constraints on the mechanisms responsible for sculpting this region of planetary parameter space.
Using radial-velocity data from the Habitable-zone Planet Finder, we have measured the mass of the Neptune-sized planet K2-25b, as well as the obliquity of its M4.5-dwarf host star in the 600-800MYr Hyades cluster. This is one of the youngest planetary systems for which both of these quantities have been measured, and one of the very few M dwarfs with a measured obliquity. Based on a joint analysis of the radial velocity data, time-series photometry from the K2 mission, and new transit light curves obtained with diffuser-assisted photometry, the planets radius and mass are $3.44pm 0.12 mathrm{R_oplus}$ and $24.5_{-5.2}^{+5.7} mathrm{M_oplus}$. These properties are compatible with a rocky core enshrouded by a thin hydrogen-helium atmosphere (5% by mass). We measure an orbital eccentricity of $e=0.43 pm 0.05$. The sky-projected stellar obliquity is $lambda=3 pm 16^{circ}$, compatible with spin-orbit alignment, in contrast to other hot Neptunes that have been studied around older stars.
Recent analysis of the planet K2-18b has shown the presence of water vapour in its atmosphere. While the H2O detection is significant, the Hubble Space Telescope (HST) WFC3 spectrum suggests three possible solutions of very different nature which can equally match the data. The three solutions are a primary cloudy atmosphere with traces of water vapour (cloudy sub-Neptune), a secondary atmosphere with a substantial amount (up to 50% Volume Mixing Ratio) of H2O (icy/water world) and/or an undetectable gas such as N2 (super-Earth). Additionally, the atmospheric pressure and the possible presence of a liquid/solid surface cannot be investigated with currently available observations. In this paper we used the best fit parameters from Tsiaras et al. (2019) to build James Webb Space Telescope (JWST) and Ariel simulations of the three scenarios. We have investigated 18 retrieval cases, which encompass the three scenarios and different observational strategies with the two observatories. Retrieval results show that twenty combined transits should be enough for the Ariel mission to disentangle the three scenarios, while JWST would require only two transits if combining NIRISS and NIRSpec data. This makes K2-18b an ideal target for atmospheric follow-ups by both facilities and highlights the capabilities of the next generation of space-based infrared observatories to provide a complete picture of low mass planets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا