Do you want to publish a course? Click here

Switchable X-ray Orbital Angular Momentum from an Artificial Spin Ice

139   0   0.0 ( 0 )
 Added by Xiaoqian Chen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Artificial spin ices (ASI) have been widely investigated as magnetic metamaterials with exotic properties governed by their geometries. In parallel, interest in X-ray photon orbital angular momentum (OAM) has been rapidly growing. Here we show that a square ASI with a programmed topological defect, a double edge dislocation, imparts OAM to scattered X-rays. Unlike single dislocations, a double dislocation does not introduce magnetic frustration, and the ASI equilibrates to its antiferromagnetic (AF) ground state. The topological charge of the defect differs with respect to the structural and magnetic order; thus, X-ray diffraction from the ASI produces photons with even and odd OAM quantum numbers at the structural and AF Bragg conditions, respectively. The magnetic transitions of the ASI allow the AF OAM beams to be switched on and off by modest variations of temperature and applied magnetic field. These results demonstrate ASIs can serve as metasurfaces for reconfigurable X-ray optics that could enable selective probes of electronic and magnetic properties.



rate research

Read More

Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics, such as data storage, memory and logic. However, it is difficult to achieve extensive degeneracy, especially in a two-dimensional system. Here, we showcase in-situ controllable geometric frustration with massive degeneracy in a two-dimensional flux quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure. The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling the switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin ice magnetic state through application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting particles using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which allows us to control new functionalities in other material systems, such as magnetic skyrmions, electrons/holes in two-dimensional materials and topological insulators, as well as colloids in soft materials.
Magnetization dynamics in an artificial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets. Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.
We report angular-dependent spin-wave spectroscopy on kagome artificial spin ice made of large arrays of interconnected Ni80Fe20 nanobars. Spectra taken in saturated and disordered states exhibit a series of resonances with characteristic in-plane angular dependencies. Micromagnetic simulations allow us to interpret characteristic resonances of a two-step magnetization reversal of the nanomagnets. The dynamic properties are consistent with topological defects that are provoked via a magnetic field applied at specific angles. Simulations that we performed on previously investigated kagome artificial spin ice consisting of isolated nanobars show characteristic discrepancies in the spin wave modes which we explain by the absence of vertices.
Artificial spin ices are periodic arrangements of interacting nanomagnets successfully used to investigate emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building blocks for creating functional materials, such as magnonic crystals, and support a large number of programmable magnetic states. We investigate the magnetization dynamics in a system exhibiting anisotropic magnetostatic interactions owing to locally broken structural inversion symmetry. We find a rich spin-wave spectrum and investigate its evolution in an external magnetic field. We determine the evolution of individual modes, from building blocks up to larger arrays, highlighting the role of symmetry breaking in defining the mode profiles. Moreover, we demonstrate that the mode spectra exhibit signatures of long-range interactions in the system. These results contribute to the understanding of magnetization dynamics in spin ices beyond the kagome and square ice geometries and are relevant for the realization of reconfigurable magnonic crystals based on spin ices.
We have measured the angular dependence of ferromagnetic resonance (FMR) spectra for Fibonacci-distorted, Kagome artificial spin ice (ASI). The number of strong modes in the FMR spectra depend on the orientation of the applied DC magnetic field. In addition, discontinuities observed in the FMR field-frequency dispersion curves also depend on DC field orientation, and signal a multi-step DC magnetization reversal, which is caused by the reduced energy degeneracy of Fibonacci-distorted vertices. The results suggest the orientation of applied magnetic field and severity of Fibonacci distortion constitute control variables for FMR modes and multi-step reversal in future magnonic devices and magnetic switching systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا