Full-Duplex Non-Orthogonal Multiple Access Cooperative Overlay Spectrum-Sharing Networks with SWIPT


Abstract in English

This paper proposes a novel non-orthogonal multiple access (NOMA) assisted cooperative spectrum sharing network, in which one of the full-duplex (FD) secondary transmitters (STs) is chosen among many for forwarding the primary transmitters and its own information to primary receiver and secondary receivers, respectively, using NOMA technique. To stimulate the ST to conduct cooperative transmission and sustain its operations, the simultaneous wireless information and power transfer (SWIPT) technique is utilized by the ST to harvest the primary signals energy. In order to evaluate the proposed systems performance, the outage probability and system throughput for the primary and secondary networks are derived in tight closed-form approximations. Further, the sum rate optimization problem is formulated for the proposed cooperative network and a rapid convergent iterative algorithm is proposed to obtain the optimized power allocation coefficients. Numerical results show that FD, SWIPT, and NOMA techniques greatly boost the performance of cooperative spectrum-sharing network in terms of outage probability, system throughput, and sum rate compared to that of half-duplex NOMA and the conventional orthogonal multiple access-time division multiple access networks.

Download