No Arabic abstract
We study the pole-skipping phenomenon of the scalar retarded Greens function in the rotating BTZ black hole background. In the static case, the pole-skipping points are typically located at negative imaginary Matsubara frequencies $omega=-(2pi T)ni$ with appropriate values of complex wave number $q$. But, in a $(1+1)$-dimensional CFT, one can introduce temperatures for left-moving and right-moving sectors independently. As a result, the pole-skipping points $omega$ depend both on left and right temperatures in the rotating background. In the extreme limit, the pole-skipping does not occur in general. But in a special case, the pole-skipping does occur even in the extreme limit, and the pole-skipping points are given by right Matsubara frequencies.
We investigate the pole-skipping phenomenon in holographic chaos. According to the pole-skipping, the energy-density Greens function is not unique at a special point in complex momentum plane. This arises because the bulk field equation has two regular near-horizon solutions at the special point. We study the regularity of two solutions more carefully using curvature invariants. In the upper-half $omega$-plane, one solution, which is normally interpreted as the outgoing mode, is in general singular at the future horizon and produces a curvature singularity. However, at the special point, both solutions are indeed regular. Moreover, the incoming mode cannot be uniquely defined at the special point due to these solutions.
Recently, it is shown that many Greens functions are not unique at special points in complex momentum space using AdS/CFT. This phenomenon is similar to the pole-skipping in holographic chaos, and the special points are typically located at $omega_n = -(2pi T)ni$ with appropriate values of complex wave number $q_n$. We study finite-coupling corrections to special points. As examples, we consider four-derivative corrections to gravitational perturbations and four-dimensional Maxwell perturbations. While $omega_n$ is uncorrected, $q_n$ is corrected at finite coupling. Some special points disappear at particular values of higher-derivative couplings. Special point locations of the Maxwell scalar and vector modes are related to each other by the electromagnetic duality.
We initiate the investigation of the zero temperature holographic superfluids with two competing orders, where besides the vacuum phase, two one band superfluid phases, the coexistent superfluid phase has also been found in the AdS soliton background for the first time. We construct the complete phase diagram in the $e-mu$ plane by numerics, which is consistent with our qualitative analysis. Furthermore, we calculate the corresponding optical conductivity and sound speed by the linear response theory. The onset of pole of optical conductivity at $omega=0$ indicates that the spontaneous breaking phase always represents the superfluid phase, and the residue of pole is increased with the chemical potential, which is consistent with the fact that the particle density is essentially the superfluid density for zero temperature superfluids. In addition, the resulting sound speed demonstrates the non-smoothness at the critical points as the order parameter of condensate, which indicates that the phase transitions can also be identified by the behavior of sound speed. Moreover, as expected from the boundary conformal field theory, the sound speed saturates to $frac{1}{sqrt{2}}$ at the large chemical potential limit for our two band holographic superfluid model.
We investigate the properties of pole-skipping of the sound channel in which the translational symmetry is broken explicitly or spontaneously. For this purpose, we analyze, in detail, not only the holographic axion model, but also the magnetically charged black holes with two methods: the near-horizon analysis and quasi-normal mode computations. We find that the pole-skipping points are related with the chaotic properties, Lyapunov exponent ($lambda_L$) and butterfly velocity ($v_B$), independently of the symmetry breaking patterns. We show that the diffusion constant ($D$) is bounded by $D ,geqslant, v_{B}^2/lambda_{L}$, where $D$ is the energy diffusion (crystal diffusion) bound for explicit (spontaneous) symmetry breaking. We confirm that the lower bound is obtained by the pole-skipping analysis in the low temperature limit.
Gravity is perturbatively renormalizable for the physical states which can be conveniently defined via foliation-based quantization. In recent sequels, one-loop analysis was explicitly carried out for Einstein-scalar and Einstein-Maxwell systems. Various germane issues and all-loop renormalizability have been addressed. In the present work we make further progress by carrying out several additional tasks. Firstly, we present an alternative 4D covariant derivation of the physical state condition by examining gauge choice-independence of a scattering amplitude. To this end, a careful dichotomy between the ordinary, and large gauge symmetries is required and appropriate gauge-fixing of the ordinary symmetry must be performed. Secondly, vacuum energy is analyzed in a finite-temperature setup. A variant optimal perturbation theory is implemented to two-loop. The renormalized mass determined by the optimal perturbation theory turns out to be on the order of the temperature, allowing one to avoid the cosmological constant problem. The third task that we take up is examination of the possibility of asymptotic freedom in finite-temperature quantum electrodynamics. In spite of the debates in the literature, the idea remains reasonable.