No Arabic abstract
Pursuing topological phases in natural and artificial materials is one of the central topics in modern physical science and engineering. In classical magnetic systems, spin waves (or magnons) and magnetic solitons (such as domain wall, vortex, skyrmion, etc) represent two important excitations. Recently, the topological insulator and semimetal states in magnon- and soliton-based crystals (or metamaterials) have attracted growing attention owing to their interesting dynamics and promising applications for designing robust spintronic devices. Here, we give an overview of current progress of topological phases in structured classical magnetism. We first provide a brief introduction to spin wave, and discuss its topological properties including magnon Hall effects, topological magnon insulators, and Dirac (Weyl) magnon semimetals. Appealing proposal of topological magnonic devices is also highlighted. We then review the collective-coordinate approach for describing the dynamics of magnetic soliton lattice. Pedagogical topological models such as the Su-Schrieffer-Heeger model and the Haldane model and their manifestation in magnetic soliton crystals are elaborated. Then we focus on the topological properties of magnetic solitons, by theoretically analyzing the first-order topological insulating phases in low dimensional systems and higher-order topological states in breathing crystals. Finally, we discuss the experimental realization and detection of the edge states in both the magnonic and solitonic crystals. We remark the challenges and future prospects before concluding this article.
We use first principles calculations to study the electronic properties of rock salt rare earth monopnictides La$X$ ($X=$N, P, As, Sb, Bi). A new type of topological band crossing termed `linked nodal rings is found in LaN when the small spin-orbital coupling (SOC) on nitrogen orbitals is neglected. Turning on SOC gaps the nodal rings at all but two points, which remain gapless due to $C_4$-symmetry and leads to a 3D Dirac semimetal. Interestingly, unlike LaN, compounds with other elements in the pnictogen group are found to be topological insulators (TIs), as a result of band reordering due to the increased lattice constant as well as the enhanced SOC on the pnictogen atom. These TI compounds exhibit multi-valley surface Dirac cones at three $bar{M}$-points on the $(111)$-surface.
Introducing magnetism into topological insulators breaks time-reversal symmetry, and the magnetic exchange interaction can open a gap in the otherwise gapless topological surface states. This allows various novel topological quantum states to be generated, including the quantum anomalous Hall effect (QAHE) and axion insulator states. Magnetic doping and magnetic proximity are viewed as being useful means of exploring the interaction between topology and magnetism. However, the inhomogeneity of magnetic doping leads to complicated magnetic ordering and small exchange gaps, and consequently the observed QAHE appears only at ultralow temperatures. Therefore, intrinsic magnetic topological insulators are highly desired for increasing the QAHE working temperature and for investigating topological quantum phenomena further. The realization and characterization of such systems are essential for both fundamental physics and potential technical revolutions. This review summarizes recent research progress in intrinsic magnetic topological insulators, focusing mainly on the antiferromagnetic topological insulator MnBi2Te4 and its family of materials.
It has been suggested that the enlarged spin susceptibility in topological insulators, described by Van Vlecks formalism, accounts for the ferromagnetism of bismuth-antimony topological chalcogenides doped with transition metal impurities. In contrast, earlier studies of HgTe and related topological systems pointed out that the interband analog of the Ruderman-Kittel-Kasuya-Yosida interaction (the Bloembergen-Rowland mechanism) leads to antiferromagnetic coupling between pairs of localized spins. Here, we critically revisit these two approaches, show their shortcomings, and elucidate why the magnitude of the interband contribution is small even in topological systems. From the proposed theoretical approach and our computational studies of magnetism in Mn-doped HgTe and CdTe, we conclude that, in the absence of band carriers, the superexchange dominates, and its sign depends on the coordination and charge state of magnetic impurities rather than on the topological class of the host material.
The combination of magnetism and topology in magnetic topological insulators (MTIs) has led to unprecedented advancements of time reversal symmetry-breaking topological quantum physics in the past decade. Compared with the uniform films, the MTI heterostructures provide a better framework to manipulate the spin-orbit coupling and spin properties. In this review, we summarize the fundamental mechanisms related to the physical orders host in (Bi,Sb)2(Te,Se)3-based hybrid systems. Besides, we provide an assessment on the general strategies to enhance the magnetic coupling and spin-orbit torque strength through different structural engineering approaches and effective interfacial interactions. Finally, we offer an outlook of MTI heterostructures-based spintronics applications, particularly in view of their feasibility to achieve room-temperature operation.
We review our recent works on the quantum transport, mainly in topological semimetals and also in topological insulators, organized according to the strength of the magnetic field. At weak magnetic fields, we explain the negative magnetoresistance in topological semimetals and topological insulators by using the semiclassical equations of motion with the nontrivial Berry curvature. We show that the negative magnetoresistance can exist without the chiral anomaly. At strong magnetic fields, we establish theories for the quantum oscillations in topological Weyl, Dirac, and nodal-line semimetals. We propose a new mechanism of 3D quantum Hall effect, via the wormhole tunneling through the Weyl orbit formed by the Fermi arcs and Weyl nodes in topological semimetals. In the quantum limit at extremely strong magnetic fields, we find that an unexpected Hall resistance reversal can be understood in terms of the Weyl fermion annihilation. Additionally, in parallel magnetic fields, longitudinal resistance dips in the quantum limit can serve as signatures for topological insulators.