Do you want to publish a course? Click here

New results from the CUORE experiment

114   0   0.0 ( 0 )
 Added by Andrea Giachero Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for neutrinoless double-beta ($0 ubetabeta$) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals arranged in a compact cylindrical structure of 19 towers. Following the completion of the detector construction in August 2016, CUORE began its first physics data run in 2017 at a base temperature of about 10 mK. Following multiple optimization campaigns in 2018, CUORE is currently in stable operating mode. In 2019, CUORE released its 2textsuperscript{nd} result of the search for $0 ubetabeta$ with a TeO$_2$ exposure of 372.5 kg$cdot$yr and a median exclusion sensitivity to a $^{130}$Te $0 ubetabeta$ decay half-life of $1.7cdot 10^{25}$ yr. We find no evidence for $0 ubetabeta$ decay and set a 90% C.I. (credibility interval) Bayesian lower limit of $3.2cdot 10^{25}$ yr on the $^{130}$Te $0 ubetabeta$ decay half-life. In this work, we present the current status of CUOREs search for $0 ubetabeta$, as well as review the detector performance. Finally, we give an update of the CUORE background model and the measurement of the $^{130}$Te two neutrino double-beta ($2 ubetabeta$) decay half-life.



rate research

Read More

With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unprecedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.
CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/keV/kg/y will be reached, in five years of data taking CUORE will have a 1 sigma half life sensitivity of 10E26 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
CUORE-0 is a cryogenic detector that uses an array of tellurium dioxide bolometers to search for neutrinoless double-beta decay of ^{130}Te. We present the first data analysis with 7.1 kg y of total TeO_2 exposure focusing on background measurements and energy resolution. The background rates in the neutrinoless double-beta decay region of interest (2.47 to 2.57 MeV) and in the {alpha} background-dominated region (2.70 to 3.90 MeV) have been measured to be 0.071 pm 0.011 and 0.019 pm 0.002 counts/keV/kg/y, respectively. The latter result represents a factor of 6 improvement from a predecessor experiment, Cuoricino. The results verify our understanding of the background sources in CUORE-0, which is the basis of extrapolations to the full CUORE detector. The obtained energy resolution (full width at half maximum) in the region of interest is 5.7 keV. Based on the measured background rate and energy resolution in the region of interest, CUORE-0 half-life sensitivity is expected to surpass the observed lower bound of Cuoricino with one year of live time.
Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The MAJORANA Collaboration assembled an array of high purity Ge detectors to search for neutrinoless double-beta decay in Ge-76. The MAJORANA DEMONSTRATOR is comprised of 44.1 kg (29.7 kg enriched in Ge-76) of Ge detectors divided between two modules contained in a low-background shield at the Sanford Underground Research Facility in Lead, South Dakota, USA. The initial goals of the DEMONSTRATOR are to establish the required background and scalability of a Ge-based next-generation ton-scale experiment. Following a commissioning run that started in 2015, the first detector module started low-background data production in early 2016. The second detector module was added in August 2016 to begin operation of the entire array. We discuss results of the initial physics runs, as well as the status and physics reach of the full MAJORANA DEMONSTRATOR experiment.
The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of 130Te with an array of 988 TeO2 bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the tect decay half-life of 9$times$10$^{25}$ years after 5,years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10$^{-2}$,counts/keV/kg/y. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of 130Te is expected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا