In this article, we establish a limiting distribution for eigenvalues of a class of auto-covariance matrices. The same distribution has been found in the literature for a regularized version of these auto-covariance matrices. The original non-regularized auto-covariance matrices are non invertible which introduce supplementary diffculties for the study of their eigenvalues through Girkos Hermitization scheme. The key result in this paper is a new polynomial lower bound for the least singular value of the resolvent matrices associated to a rank-defective quadratic function of a random matrix with independent and identically distributed entries. Another improvement in the paper is that the lag of the auto-covariance matrices can grow to infinity with the matrix dimension.