Do you want to publish a course? Click here

Space Telescope and Optical Reverberation Mapping Project. XIII. An Atlas of UV and X-ray Spectroscopic Signatures of theDisk Wind in NGC 5548

64   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The unusual behavior of the spectral lines of NGC5548 during the STORM campaign demonstrated a missing piece in the structure of AGNs. For a two-month period in the middle of the campaign, the spectral lines showed a deficit in flux and a reduced response to the variations of the UV continuum. This was the first time that this behavior was unequivocally observed in an AGN. Our previous papers explained this as being due to a variable disk-wind which acts as a shield and alters the SED. Here we use Cloudy to create an atlas of photoionization models for a variety of disk-winds to study their effects on the SED. We show that the winds have three different cases: Case 1 winds are transparent, fully ionized and have minimal effects on the intrinsic SED, although they can produce some line emission, especially HeIIor FeK{alpha}. We propose that this is the situation in most of the AGNs. Case 2 winds have a He++-He+ionization-front, block part of the XUV continuum but transmit much of the Lyman continuum. They lead to the observed abnormal behavior. Case 3 winds have H+ionization-front and block much of the Lyman continuum. The results show that the presence of the winds has important effects on the spectral lines of AGNs. They will thus have an effect on the measurements of the black hole mass and the geometry of the AGN. This atlas of spectral simulations can serve as a guide to future reverberation campaigns



rate research

Read More

80 - S. Mathur , A. Gupta , K. Page 2017
During the Space Telescope and Optical Reverberation Mapping Project (STORM) observations of NGC 5548, the continuum and emission-line variability became de-correlated during the second half of the 6-month long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as a part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than being due to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all the three observations: the UV emission line flux decrease, the soft-excess increase, and the emission line anomaly.
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multi-wavelength reverberation mapping campaign. The campaign spanned six months and achieved an almost daily cadence with observations from five ground-based telescopes. The H$beta$ and He II $lambda$4686 broad emission-line light curves lag that of the 5100 $AA$ optical continuum by $4.17^{+0.36}_{-0.36}$ days and $0.79^{+0.35}_{-0.34}$ days, respectively. The H$beta$ lag relative to the 1158 $AA$ ultraviolet continuum light curve measured by the Hubble Space Telescope is roughly $sim$50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is $sim$50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for H$beta$ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the H$beta$ and He II $lambda$4686 emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Ly $alpha$, He II(+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured H$beta$ lag is a factor of five shorter than the expected value implied by the $R_mathrm{BLR} - L_mathrm{AGN}$ relation based on the past behavior of NGC 5548.
The flux variations in the emission lines in active galactic nuclei (AGNs) are driven by variations in the ionizing continuum flux --which are usually reflected in the observable UV-optical continuum. The Reverberation mapping technique measures the delay between line and continuum variations to determine the size of the line emitting region, this is the basis for measurements of the central black hole mass in AGNs. The Space Telescope and Optical Reverberation Mapping Project (AGN STORM) on NGC 5548 in 2014 is the most intensive multi-wavelength AGN monitoring campaign ever. For most of the campaign, the emission-line variations followed changes in the continuum with a time lag, as expected. However, the lines varied independently of the observed UV-optical continuum during a 60 -- 70 day holiday. To understand this remarkable phenomenon, we study the intrinsic absorption lines present in NGC 5548. We identify a novel cycle that reproduces the absorption line variability and thus identify the physics that allows the holiday to occur. In our model, variations in this obscurers line-of-sight covering factor modify the soft X-ray continuum. This leads to changes in the ionization of helium gas in the broad-line region. Ionizing radiation produced by recombining helium then affects the ionization of other species as observed during the AGN STORM holiday. It is likely that any other model which selectively changes the soft X-ray part of the continuum during the holiday can also explain the anomalous emission line behavior observed.
Recent intensive Swift monitoring of the Seyfert 1 galaxy NGC 5548 yielded 282 usable epochs over 125 days across six UV/optical bands and the X-rays. This is the densest extended AGN UV/optical continuum sampling ever obtained, with a mean sampling rate <0.5 day. Approximately daily HST UV sampling was also obtained. The UV/optical light curves show strong correlations (r_max = 0.57 - 0.90) and the clearest measurement to date of interband lags. These lags are well-fit by a tau propto lambda^4/3 wavelength dependence, with a normalization that indicates an unexpectedly large disk radius of 0.35 +/- 0.05 lt-day at 1367 A, assuming a simple face-on model. The U-band shows a marginally larger lag than expected from the fit and surrounding bands, which could be due to Balmer continuum emission from the broad-line region as suggested by Korista and Goad. The UV/X-ray correlation is weaker (r_max < 0.45) and less consistent over time. This indicates that while Swift is beginning to measure UV/optical lags in general agreement with accretion disk theory (although the derived size is larger than predicted), the relationship with X-ray variability is less well understood. Combining this accretion disk size estimate with those from quasar microlensing studies suggests that AGN disk sizes scale approximately linearly with central black hole mass over a wide range of masses.
We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 to 9157 angstroms) combine simultaneous HST , Swift , and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination, i, temperature T1 at 1 light day from the black hole, and a temperature-radius slope, alpha. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/LEdd = 0.1
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا