Do you want to publish a course? Click here

Comprehensive Anisotropic Linear Optical Properties of Weyl Semimetals, TaAs and NbAs

101   0   0.0 ( 0 )
 Added by Rui Zu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

TaAs and NbAs are two of the earliest identified Weyl semimetals that possess many intriguing optical properties, such as chirality-dependent optical excitations and giant second harmonic generation (SHG). Linear and nonlinear optics have been employed as tools to probe the Weyl physics in these crystals. Here we extend these studies to address two important points: determining the complete anisotropic dielectric response, and to explore if and how they can reveal essential Weyl physics. For the first time, we determine the complete anisotropic dielectric functions of TaAs and NbAs by combining spectroscopic ellipsometry and density functional theory (DFT). Parameterized Lorentz oscillators are reported from 1.2-6 eV (experiment) and 0-6 eV (DFT), and good agreement is shown between them. Both linear and nonlinear optical properties have been reported to reveal Weyl physics. We suggest that strong optical resonances from trivial bands are the likely origin of the large optical second harmonic generation previously reported at these energies. Furthermore, by comparing the contribution of a small k-space centered around the Weyl cones to the total linear dielectric function, we find that these contributions are highly anisotropic and are <25% of the total dielectric function below 0.5 eV; above 1eV, these contributions are negligible. Thus, the study of Weyl physics using optical techniques requires very low energies and even there, a careful assessment is required in distinguishing the much smaller contributions of the Weyl bands from the dominant contributions of the trivial bands and Drude response to the total dielectric function.



rate research

Read More

We report a comparative polarized Raman study of Weyl semimetals TaAs, NbAs, TaP and NbP. The evolution of the phonon frequencies with the sample composition allows us to determine experimentally which atoms are mainly involved for each vibration mode. Our results confirm previous first-principles calculations indicating that the A$_1$, B$_1(2)$, E$(2)$ and E$(3)$ modes involve mainly the As(P) atoms, the B$_1(1)$ mode is mainly related to Ta(Nb) atoms, and the E$(1)$ mode involves both kinds of atoms. By comparing the energy of the different modes, we establish that the B$_1(1)$, B$_1(2)$, E$(2)$ and E$(3)$ become harder with chemical pressure increasing. This behavior differs from our observation on the A$_1$ mode, which decreases in energy, in contrast to its behavior under external pressure.
We report a structural study of the Weyl semimetals TaAs, TaP, NbP, and NbAs, utilizing diffraction techniques (single crystal x-ray diffraction and energy dispersive spectroscopy) and imaging techniques (transmission electron microscopy/scanning transmission electron microscopy). We observe defects of various degrees, leading to non-stoichiometric single crystals of all four semimetals. While TaP displays a large pnictide deficiency with composition TaP$_{0.83(3)}$, and stacking faults accompanied by anti-site disorder and site vacancies, TaAs displays transition metal deficiency with composition Ta$_{0.92(2)}$As and a high density of stacking faults. NbP also displays pnictide deficiency, yielding composition NbP$_{0.95(2)}$, and lastly, NbAs display very little deviation from a 1:1 composition, NbAs$_{1.00(3)}$, and is therefore recommended to serve as the model compound for these semimetals.
We report a structural study of the Weyl semimetals TaAs and TaP, utilizing diffraction and imaging techniques, where we show that they contain a high density of defects, leading to non-stoichiometric single crystals of both semimetals. Despite the observed defects and non-stoichiometry on samples grown using techniques already reported in the literature, de Haas-van Alphen measurements on TaP reveal quantum oscillations and a high carrier mobility, an indication that the crystals are of quality comparable to those reported elsewhere. Electronic structure calculations on TaAs reveal that the position of the Weyl points relative to the Fermi level shift with the introduction of vacancies and stacking faults. In the case of vacancies the Fermi surface becomes considerably altered, while the effect of stacking faults on the electronic structure is to allow the Weyl pockets to remain close to the Fermi surface. The observation of quantum oscillations in a non-stoichiometric crystal and the persistence of Weyl fermion pockets near the Fermi surface in a crystal with stacking faults point to the robustness of these quantum phenomena in these materials.
76 - B. Xu , Y. M. Dai , L. X. Zhao 2015
We present a systematic study of both the temperature and frequency dependence of the optical response in TaAs, a material that has recently been realized to host the Weyl semimetal state. Our study reveals that the optical conductivity of TaAs features a narrow Drude response alongside a conspicuous linear dependence on frequency. The width of the Drude peak decreases upon cooling, following a $T^{2}$ temperature dependence which is expected for Weyl semimetals. Two linear components with distinct slopes dominate the 5-K optical conductivity. A comparison between our experimental results and theoretical calculations suggests that the linear conductivity below $sim$230~cm$^{-1}$ is a clear signature of the Weyl points lying in very close proximity to the Fermi energy.
Although Weyl fermions have proven elusive in high-energy physics, their existence as emergent quasiparticles has been predicted in certain crystalline solids in which either inversion or time-reversal symmetry is brokencite{WanPRB2011,BurkovPRL2011, WengPRX2015,HuangNatComm2015}. Recently they have been observed in transition metal monopnictides (TMMPs) such as TaAs, a class of noncentrosymmetric materials that heretofore received only limited attention cite{XuScience2015, LvPRX2015, YangNatPhys2015}. The question that arises now is whether these materials will exhibit novel, enhanced, or technologically applicable electronic properties. The TMMPs are polar metals, a rare subset of inversion-breaking crystals that would allow spontaneous polarization, were it not screened by conduction electrons cite{anderson1965symmetry,shi2013ferroelectric,kim2016polar}. Despite the absence of spontaneous polarization, polar metals can exhibit other signatures of inversion-symmetry breaking, most notably second-order nonlinear optical polarizability, $chi^{(2)}$, leading to phenomena such as optical rectification and second-harmonic generation (SHG). Here we report measurements of SHG that reveal a giant, anisotropic $chi^{(2)}$ in the TMMPs TaAs, TaP, and NbAs. With the fundamental and second harmonic fields oriented parallel to the polar axis, the value of $chi^{(2)}$ is larger by almost one order of magnitude than its value in the archetypal electro-optic materials GaAs cite{bergfeld2003second} and ZnTe cite{wagner1998dispersion}, and in fact larger than reported in any crystal to date.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا