Do you want to publish a course? Click here

Baryonic and Leptonic GeV Dark Matter

93   0   0.0 ( 0 )
 Added by Bartosz Fornal
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We perform a systematic analysis of models with GeV-scale dark matter coupled to baryons and leptons. Such theories provide a natural framework to explain the matter-antimatter asymmetry of the universe. We find that only a few baryonic dark matter models are free from tree-level proton decay without explicitly imposing baryon number conservation. We enumerate those cases and provide a brief overview of their phenomenology. We then focus on a leptonic dark matter model for a more detailed discussion of the baryon asymmetry generation via leptogenesis, the symmetry restoration in the dark sector and the expected dark matter annihilation signals in indirect detection experiments.

rate research

Read More

We discuss the correlation between dark matter and Higgs decays in gauge theories where the dark matter is predicted from anomaly cancellation. In these theories, the Higgs responsible for the breaking of the gauge symmetry generates the mass for the dark matter candidate. We investigate the Higgs decays in the minimal gauge theory for Baryon number. After imposing the dark matter density and direct detection constraints, we find that the new Higgs can have a large branching ratio into two photons or into dark matter. Furthermore, we discuss the production channels and the unique signatures at the Large Hadron Collider.
We discuss the extent to which models of Weakly Interacting Massive Particle (WIMP) Dark Matter (DM) at and above the electroweak scale can be probed conclusively in future high energy and astroparticle physics experiments. We consider simplified models with bino-like dark matter and slepton-like coannihilation partners, and find that perturbative models yield the observed relic abundance up to at least 10 TeV. We emphasise that coannihilation can either increase or decrease the dark matter relic abundance. We compute the sensitivity of direct detection experiments to DM-nucleus scattering, consider indirect detection bounds and estimate the sensitivity of future proton colliders to slepton pair production. We find that current and future experiments will be able to probe the Dirac DM models up to at least 10 TeV. However, current and future searches will not be sensitive to models of Majorana dark matter for masses above 2 or 4 TeV, for one or ten coannihilation partners respectively, leaving around 70 % of the parameter space unconstrained. This demonstrates the need for new experimental ideas to access models of coannihilating Majorana dark matter.
We study the phenomenology and detection prospects of a sub-GeV Dirac dark matter candidate with resonantly enhanced annihilations via a dark photon mediator. The model evades cosmological constraints on light thermal particles in the early universe while simultaneously being in reach of current and upcoming terrestrial experiments. We conduct a global analysis of the parameter space , considering bounds from accelerator and direct detection experiments, as well as those arising from Big Bang Nucleosynthesis, the Cosmic Microwave Background and dark matter self-interactions. We also extend our discussion to the case of a dark matter subcomponent. We find that large regions of parameter space remain viable even for the case of a moderate resonant enhancement, and demonstrate the complementarity of different experimental strategies for further exploring this scenario.
We propose the use of silicon carbide (SiC) for direct detection of sub-GeV dark matter. SiC has properties similar to both silicon and diamond, but has two key advantages: (i) it is a polar semiconductor which allows sensitivity to a broader range of dark matter candidates; and (ii) it exists in many stable polymorphs with varying physical properties, and hence has tunable sensitivity to various dark matter models. We show that SiC is an excellent target to search for electron, nuclear and phonon excitations from scattering of dark matter down to 10 keV in mass, as well as for absorption processes of dark matter down to 10 meV in mass. Combined with its widespread use as an alternative to silicon in other detector technologies and its availability compared to diamond, our results demonstrate that SiC holds much promise as a novel dark matter detector.
Traditional direct searches for dark matter, looking for nuclear recoils in deep underground detectors, are challenged by an almost complete loss of sensitivity for light dark matter particles. Consequently, there is a significant effort in the community to devise new methods and experiments to overcome these difficulties, constantly pushing the limits of the lowest dark matter mass that can be probed this way. From a model-building perspective, the scattering of sub-GeV dark matter on nucleons essentially must proceed via new light mediator particles, given that collider searches place extremely stringent bounds on contact-type interactions. Here we present an updated compilation of relevant limits for the case of a scalar mediator, including a new estimate of the near-future sensitivity of the NA62 experiment as well as a detailed evaluation of the model-specific limits from Big Bang nucleosynthesis. We also derive updated and more general limits on DM particles upscattered by cosmic rays, applicable to arbitrary energy- and momentum dependences of the scattering cross section. Finally we stress that dark matter self-interactions, when evaluated beyond the common s-wave approximation, place stringent limits independently of the dark matter production mechanism. These are, for the relevant parameter space, generically comparable to those that apply in the commonly studied freeze-out case. We conclude that the combination of existing (or expected) constraints from accelerators and astrophysics, combined with cosmological requirements, puts robust limits on the maximally possible nuclear scattering rate. In most regions of parameter space these are at least competitive with the best projected limits from currently planned direct detection experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا