Do you want to publish a course? Click here

Multiplicity distributions in the low x regime in a simple model

44   0   0.0 ( 0 )
 Added by Fernando Navarra
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this work we introduce small changes in the model proposed by E. Levin and D. Kharzeev for multiplicity distributions of particles produced in proton-proton collisions. We compare the predictions of the model with the available experimental data from the LHC. We also consider the most recent version of the model proposed by E. Gotsman and E. Levin. These t

rate research

Read More

We study the modification of the multiplicity distributions in MLLA due to the presence of a QCD medium. The medium is introduced though a multiplicative constant ($f_{med}$) in the soft infrared parts of the kernels of QCD evolution equations. Using the asymptotic ansatz for quark and gluons mean multiplicities $<n_G>=e^{gamma y}$ and $<n_Q>=r^{-1}e^{gamma y}$ respectively, we study two cases: fixed $gamma$ as previously considered in the literature, and fixed $alpha_s$. We find opposite behaviors of the dispersion of the multiplicity distributions with increasing $f_{med}$ in both cases. For fixed $gamma$ the dispersion decreases, while for fixed $alpha_s$ it increases.
Multiplicity distributions exhibit, after closer inspection, peculiarly enhanced void probability and oscillatory behavior of the modified combinants. We discuss the possible sources of these oscillations and their impact on our understanding of the multiparticle production mechanism. Theoretical understanding of both phenomena within the class of compound distributions is presented.
Multiplicity distributions, P(N), provide valuable information on the mechanism of the production process. We argue that the observed P(N) contain more information (located in the small N region) than expected and used so far. We demonstrate that it can be retrieved by analysing specific combinations of the experimentally measured values of P(N) which we call {it modified combinants, Cj, and which show distinct oscillatory behavior, not observed in the usual phenomenological forms of the P(N) used to fit data. We discuss the possible sources of these oscillations and their impact on our understanding of the multiparticle production mechanism.
44 - M. Schmelling 2005
The bulk of inelastic hadronic interactions is characterized by longitudinal phase space and exponentially damped transverse momentum spectra. A simple model with only a single adjustable parameter is presented, making it a very convenient tool for systematic studies, which gives a surprisingly good description of pA-collisions at 920 GeV beam energy.
The experimentally measured multiplicity distributions exhibit, after closer inspection, peculiarly enhanced void probability and oscillatory behavior of the modified combinants. We show that both these features can be used as additional sources of information, not yet fully explored, on the mechanism of multiparticle production. We provide their theoretical understanding within the class of compound distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا