No Arabic abstract
The survey of the COSMOS field by the VLT Survey Telescope is an appealing testing ground for variability studies of active galactic nuclei (AGN). With 54 r-band visits over 3.3 yr and a single-visit depth of 24.6 r-band mag, the dataset is also particularly interesting in the context of performance forecasting for the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). This work is the fifth in a series dedicated to the development of an automated, robust, and efficient methodology to identify optically variable AGN, aimed at deploying it on future LSST data. We test the performance of a random forest (RF) algorithm in selecting optically variable AGN candidates, investigating how the use of different AGN labeled sets (LSs) and features sets affects this performance. We define a heterogeneous AGN LS and choose a set of variability features and optical and near-infrared colors based on what can be extracted from LSST data. We find that an AGN LS that includes only Type I sources allows for the selection of a highly pure (91%) sample of AGN candidates, obtaining a completeness with respect to spectroscopically confirmed AGN of 69% (vs. 59% in our previous work). The addition of colors to variability features mildly improves the performance of the RF classifier, while colors alone prove less effective than variability in selecting AGN as they return contaminated samples of candidates and fail to identify most host-dominated AGN. We observe that a bright (r < 21 mag) AGN LS is able to retrieve candidate samples not affected by the magnitude cut, which is of great importance as faint AGN LSs for LSST-related studies will be hard to find and likely imbalanced. We estimate a sky density of 6.2 million AGN for the LSST main survey down to our current magnitude limit.
The analysis of the variability of active galactic nuclei (AGNs) at different wavelengths and the study of possible correlations among different spectral windows are nowadays a major field of inquiry. Optical variability has been largely used to identify AGNs in multivisit surveys. The strength of a selection based on optical variability lies in the chance to analyze data from surveys of large sky areas by ground-based telescopes. However the effectiveness of optical variability selection, with respect to other multiwavelength techniques, has been poorly studied down to the depth expected from next generation surveys. Here we present the results of our r-band analysis of a sample of 299 optically variable AGN candidates in the VST survey of the COSMOS field, counting 54 visits spread over three observing seasons spanning > 3 yr. This dataset is > 3 times larger in size than the one presented in our previous analysis (De Cicco et al. 2015), and the observing baseline is ~8 times longer. We push towards deeper magnitudes (r(AB) ~23.5 mag) compared to past studies; we make wide use of ancillary multiwavelength catalogs in order to confirm the nature of our AGN candidates, and constrain the accuracy of the method based on spectroscopic and photometric diagnostics. We also perform tests aimed at assessing the relevance of dense sampling in view of future wide-field surveys. We demonstrate that the method allows the selection of high-purity (> 86%) samples. We take advantage of the longer observing baseline to achieve great improvement in the completeness of our sample with respect to X-ray and spectroscopically confirmed samples of AGNs (59%, vs. ~15% in our previous work), as well as in the completeness of unobscured and obscured AGNs. The effectiveness of the method confirms the importance to develop future, more refined techniques for the automated analysis of larger datasets.
We outline a strategy to select faint (i<24.5) type 1 AGN candidates down to the Seyfert/QSO boundary for spectroscopic targeting in the COSMOS field, picking candidates by their nonstellar colors in broadband ground-based photometry and morphological properties extracted from HST-ACS. AGN optical color selection has not been applied to such faint magnitudes in such a large continuous part of the sky. Hot stars are known to be the dominant contaminant for bright AGN candidate selection at z<2, but we anticipate the highest color contamination at all redshifts to be from faint starburst and compact galaxies. Morphological selection via the Gini Coefficient separates most potential AGN from these faint blue galaxies. Recent models of the quasar luminosity function are used to estimate quasar surface densities, and studies of stellar populations in the COSMOS field infer stellar contamination. We use 292 spectroscopically confirmed type 1 AGN and quasar templates to predict AGN colors with redshift, and contrast those predictions with the colors of known contaminating populations. The motivation of this study and subsequent spectroscopic follow-up is to populate and refine the faint end of the QLF where the population of type 1 AGN is presently not well known. The anticipated AGN observations will add to the ~300 already known AGN in the COSMOS field, making COSMOS a densely packed field of quasars to be used to understand supermassive black holes and probe the structure of the intergalactic medium in the intervening volume.
Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thick (CT) absorbers (NH>10^24 cm^-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 10^24 cm^-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH>~10^25 cm^-2), intrinsically luminous (L(2-10keV)>10^44 erg s^-1) AGN at z=0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6{mu}m luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a 10^25 cm^-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morphology, which is known to correlate with the presence of CT absorbers. Finally, asymmetric and blueshifted components in several optical high-ionization emission lines indicate the presence of a galactic outflow, possibly driven by the intense AGN activity (L(Bol)/L(Edd) = 0.3-0.5). Such highly obscured, highly accreting AGN are intrinsically very rare at low redshift, whereas they are expected to be much more common at the peak of the star formation and BH accretion history, at z~2-3. We demonstrate that a fully multi-wavelength approach can recover a sizable sample of such peculiar sources in large and deep surveys such as COSMOS.
Optical variability has proven to be an effective way of detecting AGNs in imaging surveys, lasting from weeks to years. In the present work we test its use as a tool to identify AGNs in the VST multi-epoch survey of the COSMOS field, originally tailored to detect supernova events. We make use of the multi-wavelength data provided by other COSMOS surveys to discuss the reliability of the method and the nature of our AGN candidates. Our selection returns a sample of 83 AGN candidates; based on a number of diagnostics, we conclude that 67 of them are confirmed AGNs (81% purity), 12 are classified as supernovae, while the nature of the remaining 4 is unknown. For the subsample of AGNs with some spectroscopic classification, we find that Type 1 are prevalent (89%) compared to Type 2 AGNs (11%). Overall, our approach is able to retrieve on average 15% of all AGNs in the field identified by means of spectroscopic or X-ray classification, with a strong dependence on the source apparent magnitude. In particular, the completeness for Type 1 AGNs is 25%, while it drops to 6% for Type 2 AGNs. The rest of the X-ray selected AGN population presents on average a larger r.m.s. variability than the bulk of non variable sources, indicating that variability detection for at least some of these objects is prevented only by the photometric accuracy of the data. We show how a longer observing baseline would return a larger sample of AGN candidates. Our results allow us to assess the usefulness of this AGN selection technique in view of future wide-field surveys.
The coeval AGN and galaxy evolution and the observed local relations between SMBHs and galaxy properties suggest some connection or feedback between SMBH growth and galaxy build-up. We looked for correlations between properties of X-ray detected AGN and their FIR detected host galaxies, to find quantitative evidences for this connection, highly debated in the latest years. We exploit the rich multi-wavelength data set available in the COSMOS field for a large sample (692 sources) of AGN and their hosts, in the redshift range $0.1<z<4$. We use X-ray data to select AGN and determine their properties (intrinsic luminosity and nuclear obscuration), and broad-band SED fitting to derive host galaxy properties (stellar mass $M_*$ and star formation rate SFR). We find that the AGN 2-10 keV luminosity ($L_{rm X}$) and the host $8-1000~mu m$ star formation luminosity ($L_{rm IR}^{rm SF}$) are significantly correlated. However, the average host $L_{rm IR}^{rm SF}$ has a flat distribution in bins of AGN $L_{rm X}$, while the average AGN $L_{rm X}$ increases in bins of host $L_{rm IR}^{rm SF}$, with logarithmic slope of $sim0.7$, in the redshifts range $0.4<z<1.2$. We also discuss the comparison between the distribution of these two quantities and the predictions from hydro-dynamical simulations. Finally we find that the average column density ($N_H$) shows a positive correlation with the host $M_*$, at all redshifts, but not with the SFR (or $L_{rm IR}^{rm SF}$). This translates into a negative correlation with specific SFR. Our results are in agreement with the idea that BH accretion and SF rates are correlated, but occur with different variability time scales. The presence of a positive correlation between $N_H$ and host $M_*$ suggests that the X-ray $N_H$ is not entirely due to the circum-nuclear obscuring torus, but may also include a contribution from the host galaxy.