No Arabic abstract
In the $Lambda$CDM model, dark energy is viewed as a constant vacuum energy density, the cosmological constant in the Einstein--Hilbert action. This assumption can be relaxed in various models that introduce a dynamical dark energy. In this letter, we argue that the mixing between infrared and ultraviolet degrees of freedom in quantum gravity lead to infinite statistics, the unique statistics consistent with Lorentz invariance in the presence of non-locality, and yield a fine structure for dark energy. Introducing IR and UV cutoffs into the quantum gravity action, we deduce the form of $Lambda$ as a function of redshift and translate this to the behavior of the Hubble parameter.
We further develop the gravitational model, Thomas-Whitehead Gravity (TW Gravity), that arises when projective connections become dynamical fields. TW Gravity has its origins in geometric actions from string theory where the TW projective connection appears as a rank two tensor, $mathcal{D}_{ab}$, on the spacetime manifold. Using a Gauss-Bonnet (GB) action built from the $(mathrm{d}+1)$-dimensional TW connection, and applying the tensor decomposition $mathcal{D}_{ab} = D_{ab} + 4Lambda /(mathrm{d}(mathrm{d}-1)) g_{ab}$, we arrive at a gravitational model made up of a $mathrm{d}$-dimensional Einstein-Hilbert + GB action sourced by $D_{ab}$ and with cosmological constant $Lambda$. The $mathrm{d}=4$ action is studied and we find that $Lambda propto 1/J_0$, with $J_0$ the coupling constant for $D_{ab}$. For $Lambda$ equal to the current measured value, $J_0$ is on the order of the measured angular momentum of the observable Universe. We view this as $Lambda$ controlling the scale of patches of the Universe that acquire angular momentum, with the net angular momentum of multiple patches vanishing, as required by the cosmological principle. We further find a universal axial scalar coupling to all fermions where the trace, $mathcal{D} = mathcal{D}_{ab}g^{ab}$ acts as the scalar. This suggests that $mathcal{D}$ is also a dark matter portal for non-standard model fermions.
By using the conserved currents associated to the diffeomorphism invariance, we study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems. The case with fixed space-time backgrounds is discussed first, where a generalized free energy is defined with the property of monotonic decreasing in dynamic processes. It is then shown that the (absolute) thermodynamical stability implies the dynamical stability, while the linear dynamical stability implies the thermodynamical (meta-)stability. The case with full back-reaction is much more complicated. With the help of conserved currents associated to the diffeomorphism invariance induced by a preferred vector field, we propose a thermodynamic form of the bulk space-time dynamics with a preferred temperature of the event horizon, where a monotonically decreasing quantity can be defined as well. In both cases, our analyses help to clarify some aspects of the far-from-equilibrium holographic physics.
We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called {it sphere lattice regularization}, we solve the divergence problem. The regularization utilizes the closed-string configuration. We consider 4 different approaches: 1) restriction of the integral region (Randall-Schwartz), 2) method of 1) using the minimal area surfaces, 3) introducing the weight function, 4) {it generalized path-integral}. We claim the 5 dimensional field theories are quantized properly and all divergences are renormalized. At present, it is explicitly demonstrated in the numerical way, not in the analytical way. The renormalization-group function ($be$-function) is explicitly obtained. The renormalization-group flow of the cosmological constant is concretely obtained.
The today estimated value of dark energy can be achieved by the vacuum condensate induced by neutrino mixing phenomenon. Such a tiny value is recovered for a cut-off of the order of Planck scale and it is linked to the sub eV neutrino mass scale. Contributions to dark energy from auxiliary fields or mechanisms are not necessary in this approach.
Casimir energy is calculated for 5D scalar theory in the {it warped} geometry. A new regularization, called {it sphere lattice regularization}, is taken. The regularized configuration is {it closed-string like}. We numerically evaluate $La$(4D UV-cutoff), $om$(5D bulk curvature, extra space UV-boundary parameter) and $T$(extra space IR-boundary parameter) dependence of Casimir energy. 5D Casimir energy is {it finitely} obtained after the {it proper renormalization procedure.} The {it warp parameter} $om$ suffers from the {it renormalization effect}. Regarding Casimir energy as the main contribution to the cosmological term, we examine the dark energy problem.