Synthetically Encapsulated & Self-Organized Transition Metal Oxide Nano Structures inside Carbon Nanotubes as Robust Li-ion Battery Anode Materials


Abstract in English

We report a comprehensive study on the electrochemical performance of four different Transition Metal Oxides encapsulated inside carbon nanotubes (CNT). Irrespective of the type of oxide-encapsulate, all these samples exhibit superior cyclic stability as compared to the bare-oxide. Innovative use of camphor during sample synthesis enables precise control over the morphology of these self-organized carbon nanotube structures, which in turn appears to play a crucial role in the magnitude of the specific capacity. A comparative evaluation of the electrochemical data on different samples bring forward interesting inferences pertaining to the morphology, filling fraction of the oxide-encapsulate, and the presence of oxide nano-particles adhering outside the filled CNT. Our results provides useful pointers towards the optimization of critical parameters, thus paving the way for using these synthetically encapsulated and self-organized carbon nanotube structures as anode materials for Li-ion batteries, and possibly other electrochemical applications.

Download