No Arabic abstract
First proposed in 2013 by Yagi and Yunes, the quasi-universal emph{I-Love-Q relations} consist of a set of relations between the moment of inertia, the spin-induced quadrupole moment and the electric quadrupolar tidal deformability of neutron stars which are independent of the Equation of State (EoS) within an accuracy of $sim1%$. In this work, we show that these relations hold for different Skyrme-based nuclear matter EoS and also for the star-like solutions of different Einstein-BPS-Skyrme-models, some of which do not even present a barotropic equation of state. Further, other quasi-universal relations are analyzed, and together with recent GW observations, we use them to select the generalized Skyrme model that better reproduces observations. Our results reaffirm both the universality of the emph{I-Love-Q} relations and the suitability of generalized Skyrme models to describe nuclear matter inside neutron stars.
We study the coupling of nuclear matter described by the BPS Skyrme model to generalized gravity. Concretely, we consider the Starobinsky model which provides the leading-order correction to the Einstein-Hilbert action. Static solutions describing neutron stars are found both for the full field theory and for the mean-field approximation. We always consider the full Starobinsky model in the nonperturbative approach, using appropriately generalized shooting methods for the numerical neutron star calculations. Many of our results are similar to previous investigations of neutron stars for the Starobinsky model using other models of nuclear matter, but there are some surprizing discrepancies. The Newtonian mass relevant for the surface redshift, e.g., results larger than the ADM mass in our model, in contrast to other investigations. This difference is related to the particularly high stiffness of nuclear matter described by the BPS Skyrme model and offers an interesting possibility to distinguish different models of nuclear matter within generalized gravity.
We propose a new equation of state for nuclear matter based on a generalized Skyrme model which is consistent with all current constraints on the observed properties of neutron stars. This generalized model depends only on two free parameters related to the ranges of pressure values at which different submodels are dominant, and which can be adjusted so that mass-radius and deformability constraints from astrophysical and gravitational wave measurements can be met. Our results support the Skyrme model and its generalizations as good candidates for a low energy effective field-theoretic description of nuclear matter even at extreme conditions such as those inside neutron stars.
In the last few decades, lots of universal relations between different global physical quantities of neutron stars have been proposed to constrain the unobservable or hard to be observed properties of neutron stars. But few of them are related to the gravitational redshift or the gravitational binding energy, especially for the fast rotating neutron stars. Here we will focus on the universal relations related to these two quantities. Based on 11 equations of state (EOSs) from the predictions of microscopic nuclear many-body theories for normal or hybrid neutron stars, we proposed a set of new quasi-universal relations under three rotating cases: static, general rotating and Keplerian rotating. These new quasi-universal relations provide a potential way to constrain or estimate the unobservable or hard to be observed properties of neutron stars.
We study the entanglement entropy in 1+1 dimensional conformal field theories in the presence of interfaces from a holographic perspective. Compared with the well-known case of boundary conformal field theories, interfaces allow for several interesting new observables. Depending on how the interface is located within the entangling region, the entanglement entropies differ and exhibit surprising new patterns and universal relations. While our analysis is performed within the framework of holography, we expect our results to hold more generally.
We relate the fundamental quadrupolar fluid mode of isolated non-rotating NSs and the dominant oscillation frequency of neutron star merger remnants. Both frequencies individually are known to correlate with certain stellar parameters like radii or the tidal deformability, which we further investigate by constructing fit formulae and quantifying the scatter of the data points from those relations. Furthermore, we compare how individual data points deviate from the corresponding fit to all data points. Considering this point-to-point scatter we uncover a striking similarity between the frequency deviations of perturbative data for isolated NSs and of oscillation frequencies of rapidly rotating, hot, massive merger remnants. The correspondence of frequency deviations in these very different stellar systems points to an underlying mechanism and EoS information being encoded in the frequency deviation. We trace the frequency scatter back to deviations of the tidal Love number from an average tidal Love number for a given stellar compactness. Our results thus indicate a possibility to break the degeneracy between NS radii, tidal deformability and tidal Love number. We also relate frequency deviations to the derivative of the tidal deformability with respect to mass. Our findings generally highlight a possibility to improve GW asteroseismology relations where the systematic behavior of frequency deviations is employed to reduce the scatter in such relationships and consequently increase the measurement accuracy. In addition, we relate the f-mode frequency of static stars and the dominant GW frequency of merger remnants. We find an analytic mapping to connect the masses of both stellar systems, which yields particularly accurate mass-independent relations between both frequencies and between the postmerger frequency and the tidal deformability.