Mapping a new cluster of charmoniumlike structures at $e^+e^-$ collisions


Abstract in English

In this work, we find a Critical Energy induced Enhancement (CEE) mechanism for the general three-body open-charm process at the $e^+e^-$ collisions, which utilizes the peculiar kinematic behavior of the $e^+e^-$ annihilation process involving three-body final states. We present a general analysis of a three-body process $e^+e^-to BCto B(Cto DE)$. When the center-of-mass (CM) energy of the $e^+e^-$ collision satisfies a critical relation $sqrt{s}=m_B+m_C$, there clearly exists the reflection peak of an intermediate $C$ state near the threshold of the invariant mass distribution of $m_{BE}$ or $m_{BD}$, whose formation is very sensitive to the CM energy. The reflection enhancement phenomenon induced at the critical energy means that a new cluster of charmoniumlike structures can be experimentally mapped. Taking an example of $e^+e^-to D_s^{*-}D_{s2}^*(2573)^+ to D_s^{*-}(D^0K^+)$, we further illustrate this novel phenomenon when $sqrt{s}=4.680$ GeV. What is more important is that a series of optimal CM energy points to search for new charmoniumlike structures in three-body open-charm processes from $e^+e^-$ annihilation are suggested, which can be accessible at BESIII and further BelleII as a new research topic.

Download