Do you want to publish a course? Click here

Robustness and Generalization to Nearest Categories

75   0   0.0 ( 0 )
 Added by Yao-Yuan Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Adversarial robustness has emerged as a desirable property for neural networks. Prior work shows that robust networks perform well in some out-of-distribution generalization tasks, such as transfer learning and outlier detection. We uncover a different kind of out-of-distribution generalization property of such networks, and find that they also do well in a task that we call nearest category generalization (NCG) - given an out-of-distribution input, they tend to predict the same label as that of the closest training example. We empirically show that this happens even when the out-of-distribution inputs lie outside the robustness radius of the training data, which suggests that these networks may generalize better along unseen directions on the natural image manifold than arbitrary unseen directions. We examine how performance changes when we change the robustness regions during training. We then design experiments to investigate the connection between out-of-distribution detection and nearest category generalization. Taken together, our work provides evidence that robust neural networks may resemble nearest neighbor classifiers in their behavior on out-of-distribution data. The code is available at https://github.com/yangarbiter/nearest-category-generalization



rate research

Read More

Existing generalization measures that aim to capture a models simplicity based on parameter counts or norms fail to explain generalization in overparameterized deep neural networks. In this paper, we introduce a new, theoretically motivated measure of a networks simplicity which we call prunability: the smallest emph{fraction} of the networks parameters that can be kept while pruning without adversely affecting its training loss. We show that this measure is highly predictive of a models generalization performance across a large set of convolutional networks trained on CIFAR-10, does not grow with network size unlike existing pruning-based measures, and exhibits high correlation with test set loss even in a particularly challenging double descent setting. Lastly, we show that the success of prunability cannot be explained by its relation to known complexity measures based on models margin, flatness of minima and optimization speed, finding that our new measure is similar to -- but more predictive than -- existing flatness-based measures, and that its predictions exhibit low mutual information with those of other baselines.
Mixup is a popular data augmentation technique based on taking convex combinations of pairs of examples and their labels. This simple technique has been shown to substantially improve both the robustness and the generalization of the trained model. However, it is not well-understood why such improvement occurs. In this paper, we provide theoretical analysis to demonstrate how using Mixup in training helps model robustness and generalization. For robustness, we show that minimizing the Mixup loss corresponds to approximately minimizing an upper bound of the adversarial loss. This explains why models obtained by Mixup training exhibits robustness to several kinds of adversarial attacks such as Fast Gradient Sign Method (FGSM). For generalization, we prove that Mixup augmentation corresponds to a specific type of data-adaptive regularization which reduces overfitting. Our analysis provides new insights and a framework to understand Mixup.
Using weight decay to penalize the L2 norms of weights in neural networks has been a standard training practice to regularize the complexity of networks. In this paper, we show that a family of regularizers, including weight decay, is ineffective at penalizing the intrinsic norms of weights for networks with positively homogeneous activation functions, such as linear, ReLU and max-pooling functions. As a result of homogeneity, functions specified by the networks are invariant to the shifting of weight scales between layers. The ineffective regularizers are sensitive to such shifting and thus poorly regularize the model capacity, leading to overfitting. To address this shortcoming, we propose an improved regularizer that is invariant to weight scale shifting and thus effectively constrains the intrinsic norm of a neural network. The derived regularizer is an upper bound for the input gradient of the network so minimizing the improved regularizer also benefits the adversarial robustness. Residual connections are also considered and we show that our regularizer also forms an upper bound to input gradients of such a residual network. We demonstrate the efficacy of our proposed regularizer on various datasets and neural network architectures at improving generalization and adversarial robustness.
Adversarial training can considerably robustify deep neural networks to resist adversarial attacks. However, some works suggested that adversarial training might comprise the privacy-preserving and generalization abilities. This paper establishes and quantifies the privacy-robustness trade-off and generalization-robustness trade-off in adversarial training from both theoretical and empirical aspects. We first define a notion, {it robustified intensity} to measure the robustness of an adversarial training algorithm. This measure can be approximate empirically by an asymptotically consistent empirical estimator, {it empirical robustified intensity}. Based on the robustified intensity, we prove that (1) adversarial training is $(varepsilon, delta)$-differentially private, where the magnitude of the differential privacy has a positive correlation with the robustified intensity; and (2) the generalization error of adversarial training can be upper bounded by an $mathcal O(sqrt{log N}/N)$ on-average bound and an $mathcal O(1/sqrt{N})$ high-probability bound, both of which have positive correlations with the robustified intensity. Additionally, our generalization bounds do not explicitly rely on the parameter size which would be prohibitively large in deep learning. Systematic experiments on standard datasets, CIFAR-10 and CIFAR-100, are in full agreement with our theories. The source code package is available at url{https://github.com/fshp971/RPG}.
Generalization of deep networks has been of great interest in recent years, resulting in a number of theoretically and empirically motivated complexity measures. However, most papers proposing such measures study only a small set of models, leaving open the question of whether the conclusion drawn from those experiments would remain valid in other settings. We present the first large scale study of generalization in deep networks. We investigate more then 40 complexity measures taken from both theoretical bounds and empirical studies. We train over 10,000 convolutional networks by systematically varying commonly used hyperparameters. Hoping to uncover potentially causal relationships between each measure and generalization, we analyze carefully controlled experiments and show surprising failures of some measures as well as promising measures for further research.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا