Do you want to publish a course? Click here

Transition region from turbulent to dead zone in protoplanetary disks: local shearing box simulations

142   0   0.0 ( 0 )
 Added by Fulvia Pucci
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamical evolution of protoplanetary disks is of key interest for building a comprehensive theory of planet formation and to explain the observational properties of these objects. Using the magnetohydrodynamics code Athena++, with an isothermal shearing box setup, we study the boundary between the active and dead zone, where the accretion rate changes and mass can accumulate. We quantify how the turbulence level is affected by the presence of a non uniform ohmic resistivity in the radial-x direction that leads to a region of inhibited turbulence (or dead zone). Comparing the turbulent activity to that of ideal simulations, the turbulence inhibited area shows density fluctuations and magnetic activity at its boundaries, driven by energy injection from the active (ideal) zone boundaries. We find magnetic dissipation to be significantly stronger in the ideal regions, and the turbulence penetration through the boundary of the dead zone is determined by the value of the resistivity itself, through the ohmic dissipation process, though the thickness of the transition does not play a significant role in changing the dissipation. We investigate the 1D spectra along the shearing direction: magnetic spectra appear flat at large scales both in ideal as well as resistive simulations, though a Kolmogorov scaling over more than one decade persists in the dead zone, suggesting the turbulent cascade is determined by the hydrodynamics of the system: MRI dynamo action is inhibited where sufficiently high resistivity is present.



rate research

Read More

We develop a framework for magnetohydrodynamical (MHD) simulations in a local cylindrical shearing box by extending the formulation of the Cartesian shearing box. We construct shearing-periodic conditions at the radial boundaries of a simulation box from the conservation relations of the basic MHD equations, taking into account the explicit radial dependence of physical quantities. We demonstrate quasi-steady mass accretion, which cannot be handled by the standard Cartesian shearing box model, with an ideal MHD simulation in a vertically unstratified cylindrical shearing box up to 200 rotations. In this demonstrative run we set up (i) net vertical magnetic flux, (ii) a locally isothermal equation of state, and (iii) a sub-Keplerian equilibrium rotation, whereas the sound velocity and the initial Alfven velocity have the same radial dependence as that of the Keplerian velocity. Inward mass accretion is induced to balance with the outward angular momentum flux of the MHD turbulence triggered by the magnetorotational instability in a self-consistent manner. We discuss detailed physical properties of the saturated magnetic field, in comparison to the results of a Cartesian shearing box simulation.
142 - R. Moll 2012
The launching process of a magnetically driven outflow from an accretion disk is investigated in a local, shearing box model which allows a study of the feedback between accretion and angular momentum loss. The mass-flux instability found in previous linear analyses of this problem is recovered in a series of 2D (axisymmetric) simulations in the MRI-stable (high magnetic field strength) regime. At low field strengths that are still sufficient to suppress MRI, the instability develops on a short radial length scale and saturates at a modest amplitude. At high field strengths, a long-wavelength clump instability of large amplitude is observed, with growth times of a few orbits. As speculated before, the unstable connection between disk and outflow may be relevant for the time dependence observed in jet-producing disks. The success of the simulations is due in a large part to the implementation of an effective wave-transmitting upper boundary condition.
It has recently been established that the evolution of protoplanetary disks is primarily driven by magnetized disk winds, requiring large-scale magnetic flux threading the disks. The size of such disks is expected to shrink in time, as opposed to the conventional scenario of viscous expansion. We present the first global 2D non-ideal magnetohydrodynamic (MHD) simulations of protoplanetary disks that are truncated in the outer radius, aiming to understand the interaction of the disk with the interstellar environment, as well as global evolution of the disk and magnetic flux. We find that as the system relaxes, poloidal magnetic field threading the disk beyond the truncation radius collapses towards the midplane, leading to rapid reconnection. This process removes a substantial amount of magnetic flux from the system, and forms closed poloidal magnetic flux loops encircling the outer disk in quasi-steady-state. These magnetic flux loops can drive expansion beyond truncation radius, corresponding to substantial mass loss through magnetized disk outflow beyond truncation radius analogous to a combination of viscous spreading and external photoevaporation. The magnetic flux loops gradually shrink over time whose rates depend on level of disk magnetization and external environments, which eventually governs the long-term disk evolution.
67 - Philip J. Armitage 2015
This review introduces physical processes in protoplanetary disks relevant to accretion and the initial stages of planet formation. After a brief overview of the observational context, I introduce the elementary theory of disk structure and evolution, review the gas-phase physics of angular momentum transport through turbulence and disk winds, and discuss possible origins for the episodic accretion observed in Young Stellar Objects. Turning to solids, I review the evolution of single particles under aerodynamic forces, and describe the conditions necessary for the development of collective gas-particle instabilities. Observations show that disks can exhibit pronounced large-scale structure, and I discuss the types of structures that may form from gas and particle interactions at ice lines, vortices and zonal flows, prior to the formation of large planetary bodies. I conclude with disk dispersal.
Magnetic fields are fundamental to the accretion dynamics of protoplanetary disks and they likely affect planet formation. Typical methods to study the magnetic field morphology observe the polarization of dust or spectral lines. However, it has recently become clear that dust-polarization in ALMAs spectral regime not always faithfully traces the magnetic field structure of protoplanetary disks, which leaves spectral line polarization as a promising method of mapping the magnetic field morphologies of such sources. We aim to model the emergent polarization of different molecular lines in the ALMA wavelength regime that are excited in protoplanetary disks. We explore a variety of disk models and molecules to identify those properties that are conducive to the emergence of polarization in spectral lines and may therefore be viably used for magnetic field measurements in protoplanetary disks. Methods. We use PORTAL (POlarized Radiative Transfer Adapted to Lines) in conjunction with LIME (Line Emission Modeling Engine). Together, they allow us to treat the polarized line radiative transfer of complex three-dimensional physical and magnetic field structures. We present simulations of the emergence of spectral line polarization of different molecules and molecular transitions in the ALMA wavelength regime and we comment on the observational feasibility of ALMA linear polarization observations of protoplanetary disks. We find that molecules that thermalize at high densities, such as HCN, are also most susceptible to polarization. We find that such molecules are expected to be significantly polarized in protoplanetary disks, while molecules that thermalize at low densities, such as CO, are only significantly polarized in the outer disk regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا