Do you want to publish a course? Click here

The LOFAR Two Metre Sky Survey: Deep Fields. II. The ELAIS-N1 LOFAR deep field

97   0   0.0 ( 0 )
 Added by Philip Best
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The LOFAR Two-metre Sky Survey (LoTSS) will cover the full northern sky and, additionally, aims to observe the LoTSS deep fields to a noise level of ~10 microJy/bm over several tens of square degrees in areas that have the most extensive ancillary data. This paper presents the ELAIS-N1 deep field, the deepest of the LoTSS deep fields to date. With an effective observing time of 163.7 hours, it reaches a root mean square (RMS) noise level below 20 microJy/bm in the central region (and below 30 microJy/bm over 10 square degrees). The resolution is 6 arcsecs and 84862 radio sources were detected in the full area (68 sq. deg.) with 74127 sources in the highest quality area at less than 3 degrees from the pointing centre. The observation reaches a sky density of more than 5000 sources per sq. deg. in the central ~5 sq. deg. region. We present the calibration procedure, which addresses the special configuration of some observations and the extended bandwidth covered (115 to 177 MHz; central frequency 146.2 MHz) compared to standard LoTSS. We also describe the methods used to calibrate the flux density scale using cross-matching with sources detected by other radio surveys in the literature. We find the flux density uncertainty related to the flux density scale to be ~6.5%. By studying the variations of the flux density measurements between different epochs, we show that relative flux density calibration is reliable out to about a 3 degree radius, but that additional flux density uncertainty is present for all sources at about the 3 per cent level; this is likely to be associated with residual calibration errors, and is shown to be more significant in datasets with poorer ionosphere conditions. We also provide intra-band spectral indices, which can be useful to detect sources with unusual spectral properties. The final uncertainty in the flux densities is estimated to be ~10% for ELAIS-N1.



rate research

Read More

The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120-168MHz survey of the entire northern sky for which observations are now 20% complete. We present our first full-quality public data release. For this data release 424 square degrees, or 2% of the eventual coverage, in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45$^circ$00$$00$$ to 57$^circ$00$$00$$) were mapped using a fully automated direction-dependent calibration and imaging pipeline that we developed. A total of 325,694 sources are detected with a signal of at least five times the noise, and the source density is a factor of $sim 10$ higher than the most sensitive existing very wide-area radio-continuum surveys. The median sensitivity is S$_{rm 144 MHz} = 71,mu$Jy beam$^{-1}$ and the point-source completeness is 90% at an integrated flux density of 0.45mJy. The resolution of the images is 6$$ and the positional accuracy is within 0.2$$. This data release consists of a catalogue containing location, flux, and shape estimates together with 58 mosaic images that cover the catalogued area. In this paper we provide an overview of the data release with a focus on the processing of the LOFAR data and the characteristics of the resulting images. In two accompanying papers we provide the radio source associations and deblending and, where possible, the optical identifications of the radio sources together with the photometric redshifts and properties of the host galaxies. These data release papers are published together with a further $sim$20 articles that highlight the scientific potential of LoTSS.
Low-frequency radio observations are revealing an increasing number of diffuse synchrotron sources from galaxy clusters, dominantly in the form of radio halos or radio relics. The existence of this diffuse synchrotron emission indicates the presence of relativistic particles and magnetic fields. It is still an open question what mechanisms exactly are responsible for the population of relativistic electrons driving this synchrotron emission. The LOFAR Two-metre Sky Survey Deep Fields offer a unique view of this problem. Reaching noise levels below 30 $mu$Jy/beam, these are the deepest images made at the low frequency of 144 MHz. This paper presents a search for diffuse emission in galaxy clusters in the first data release of the LOFAR Deep Fields. We detect a new high-redshift radio halo with a flux density of $8.9 pm 1.0$ mJy and corresponding luminosity of $P_{144mathrm{MHz}}=(3.6 pm 0.6)times10^{25}$ W Hz$^{-1}$ in an X-ray detected cluster at $z=0.77$ with a mass estimate of $M_{500} = 3.3_{-1.7}^{+1.1} times 10^{14} M_odot.$ Deep upper limits are placed on clusters with non-detections. We compare the results to the correlation between halo luminosity and cluster mass derived for radio halos found in the literature. This study is one of few to find diffuse emission in low mass ($M_{500} < 5times10^{14} M_odot$) systems and shows that deep low-frequency observations of galaxy clusters are fundamental for opening up a new part of parameter space in the study of non-thermal phenomena in galaxy clusters.
In this paper, we investigate the relationship between 150MHz luminosity and star formation rate (the SFR-L150 relation) using 150MHz measurements for a near-infrared selected sample of 118,517 $z<1$ galaxies. New radio survey data offer compelling advantages for studying star formation in galaxies, with huge increases in sensitivity, survey speed and resolution over previous generation surveys, and remaining impervious to extinction. The LOFAR Surveys Key Science Project is transforming our understanding of the low-frequency radio sky, with the 150MHz data over the ELAIS-N1 field reaching an RMS sensitivity of 20uJy/beam over 10 deg$^2$ at 6 resolution. All of the galaxies studied have SFR and stellar mass estimates derived from energy balance SED fitting, using redshifts and aperture-matched forced photometry from the LOFAR Two-metre Sky Survey (LoTSS) deep fields data release. The impact of active galactic nuclei is minimised by leveraging the deep ancillary data alongside outlier-resistant median-likelihood methods. We find a linear and non-evolving SFR-L150 relation, apparently consistent with expectations based on calorimetric arguments, down to the lowest SFRs. However, we also recover compelling evidence for stellar mass dependence in line with previous work on this topic, in the sense that higher mass galaxies have a larger 150MHz luminosity at a given SFR, suggesting that the overall agreement with calorimetric arguments may be a coincidence. We conclude that in the absence of AGN, 150MHz observations can be used to measure accurate galaxy SFRs out to $z=1$ at least, but it is necessary to account for stellar mass in order to obtain 150MHz-derived SFRs accurate to <0.5 dex. Our best-fit relation is $log_{10} (L_mathrm{150 MHz} / W,Hz^{-1}) = (0.90pm 0.01) log_{10}(psi/M_odot,mathrm{yr}^{-1}) + (0.33 pm 0.04) log_{10} (M/10^{10}M_odot) + 22.22 pm 0.02$. (Abridged)
We present the source associations, cross-identifications, and multi-wavelength properties of the faint radio source population detected in the deep tier of the LOFAR Two Metre Sky Survey (LoTSS): the LoTSS Deep Fields. The first LoTSS Deep Fields data release consists of deep radio imaging at 150~MHz of the ELAIS-N1, Lockman Hole, and Bo{o}tes fields, down to RMS sensitives of around 20, 22, and 32$~mu$Jy,beam$^{-1}$, respectively. These fields are some of the best studied extra-galactic fields in the northern sky, with existing deep, wide-area panchromatic photometry from X-ray to infrared wavelengths, covering a total of $approx$~26~mbox{deg$^{2}$}. We first generated improved multi-wavelength catalogues in ELAIS-N1 and Lockman Hole; combined with the existing catalogue for Bo{o}tes, we present forced, matched aperture photometry for over 7.2 million sources across the three fields. We identified multi-wavelength counterparts to the radio detected sources, using a combination of the Likelihood Ratio method and visual classification, which greatly enhances the scientific potential of radio surveys and allows for the characterisation of the photometric redshifts and the physical properties of the host galaxies. The final radio-optical cross-matched catalogue consists of 81,951 radio-detected sources, with counterparts identified and multi-wavelength properties presented for 79,820 ($>$97%) sources. We also examine the properties of the host galaxies, and through stacking analysis find that the radio population with no identified counterpart is likely dominated by AGN at $zsim3-4$. This dataset contains one of the largest samples of radio-selected star-forming galaxies and active galactic nuclei (AGN) at these depths, making it ideal for studying the history of star-formation, and the evolution of galaxies and AGN across cosmic time.
We present deep polarimetric observations of the European Large Area ISO Survey-North 1 (ELAIS-N1) field using the Low Frequency Array (LOFAR) at 114.9-177.4 MHz. The ELAIS-N1 field is part of the LOFAR Two-metre Sky Survey deep fields data release I. For six eight-hour observing epochs, we align the polarization angles and stack the 20-resolution Stokes $Q$, $U$-parameter data cubes. This produces a 16 deg$^2$ image with 1$sigma_{rm QU}$ sensitivity of 26 $mu$Jy/beam in the central area. In this paper, we demonstrate the feasibility of the stacking technique, and we generate a catalog of polarized sources in ELAIS-N1 and their associated Faraday rotation measures (RMs). While in a single-epoch observation we detect three polarized sources, this number increases by a factor of about three when we consider the stacked data, with a total of ten sources. This yields a surface density of polarized sources of one per 1.6 deg$^2$. The Stokes $I$ images of three of the ten detected polarized sources have morphologies resembling those of FR I radio galaxies. This represents a greater fraction of this type of source than previously found, which suggests that more sensitive observations may help with their detection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا