Do you want to publish a course? Click here

Perturbative deflection angle, gravitational lensing in the strong field limit and the black hole shadow

118   0   0.0 ( 0 )
 Added by Junji Jia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A perturbative method to compute the deflection angle of both timelike and null rays in arbitrary static and spherically symmetric spacetimes in the strong field limit is proposed. The result takes a quasi-series form of $(1-b_c/b)$ where $b$ is the impact parameter and $b_c$ is its critical value, with coefficients of the series explicitly given. This result also naturally takes into account the finite distance effect of both the source and detector, and allows to solve the apparent angles of the relativistic images in a more precise way. From this, the BH angular shadow size is expressed as a simple formula containing metric functions and particle/photon sphere radius. The magnification of the relativistic images were shown to diverge at different values of the source-detector angular coordinate difference, depending on the relation between the source and detector distance from the lens. To verify all these results, we then applied them to the Hayward BH spacetime, concentrating on the effects of its charge parameter $l$ and the asymptotic velocity $v$ of the signal. The BH shadow size were found to decrease slightly as $l$ increase to its critical value, and increase as $v$ decreases from light speed. For the deflection angle and the magnification of the images however, both the increase of $l$ and decrease of $v$ will increase their values.



rate research

Read More

541 - V. Bozza , G. Scarpetta 2007
The gravitational field of supermassive black holes is able to strongly bend light rays emitted by nearby sources. When the deflection angle exceeds $pi$, gravitational lensing can be analytically approximated by the so-called strong deflection limit. In this paper we remove the conventional assumption of sources very far from the black hole, considering the distance of the source as an additional parameter in the lensing problem to be treated exactly. We find expressions for critical curves, caustics and all lensing observables valid for any position of the source up to the horizon. After analyzing the spherically symmetric case we focus on the Kerr black hole, for which we present an analytical 3-dimensional description of the higher order caustic tubes.
186 - Shan-Shan Zhao , Yi Xie 2017
A modified Hayward black hole is a nonsingular black hole. It is proposed to form when the pressure generated by quantum gravity can stop matters collapse as the matter reaches Planck density. Strong deflection gravitational lensing happening nearby its event horizon might provide some clues of these quantum effects in its central core. We investigate observables of the strong deflection lensing, including angular separations, brightness differences and time delays between its relativistic images, and estimate their values for the supermassive black hole in the Galactic center. We find that it is possible to distinguish the modified Hayward black hole from a Schwarzschild one, but it demands very high resolution beyond current stage.
In this article, we present an overview of the new developments in problems of the plasma influence on the effects of gravitational lensing, complemented by pieces of new material and relevant discussions. Deflection of light in the presence of gravity and plasma is determined by a complex combination of various physical phenomena: gravity, dispersion, refraction. In particular, the gravitational deflection itself, in a homogeneous plasma without refraction, differs from the vacuum one and depends on the frequency of the photon. In an inhomogeneous plasma, chromatic refraction also takes place. We describe chromatic effects in strong lens systems including a shift of angular position of image and a change in magnification. We also investigate high-order images that arise when lensing on a black hole surrounded by homogeneous plasma. The recent results of analytical studies of the effect of plasma on the shadow of the Schwarzschild and Kerr black holes are presented.
Continuing work initiated in an earlier publication [Ishihara, Suzuki, Ono, Kitamura, Asada, Phys. Rev. D {bf 94}, 084015 (2016) ], we discuss a method of calculating the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime, especially by taking account of the finite distance from a lens object to a light source and a receiver. For this purpose, we use the Gauss-Bonnet theorem to define the bending angle of light, such that the definition can be valid also in the strong deflection limit. Finally, this method is applied to Schwarzschild spacetime in order to discuss also possible observational implications. The proposed corrections for Sgr A$^{ast}$ for instance are able to amount to $sim 10^{-5}$ arcseconds for some parameter range, which may be within the capability of near-future astronomy, while also the correction for the Sun in the weak field limit is $sim 10^{-5}$ arcseconds.
85 - Shan-Shan Zhao , Yi Xie 2016
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordstr{o}m black hole or those of a Reissner-Nordstr{o}m black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا