Do you want to publish a course? Click here

Circuit-based quantum random access memory for classical data with continuous amplitudes

75   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Loading data in a quantum device is required in several quantum computing applications. Without an efficient loading procedure, the cost to initialize the algorithms can dominate the overall computational cost. A circuit-based quantum random access memory named FF-QRAM can load M n-bit patterns with computational cost O(CMn) to load continuous data where C depends on the data distribution. In this work, we propose a strategy to load continuous data without post-selection with computational cost O(Mn). The proposed method is based on the probabilistic quantum memory, a strategy to load binary data in quantum devices, and the FF-QRAM using standard quantum gates, and is suitable for noisy intermediate-scale quantum computers.



rate research

Read More

The interplay between ferromagnetism and topological properties of electronic band structures leads to a precise quantization of Hall resistance without any external magnetic field. This so-called quantum anomalous Hall effect (QAHE) is born out of topological correlations, and is oblivious of low-sample quality. It was envisioned to lead towards dissipationless and topologically protected electronics. However, no clear framework of how to design such an electronic device out of it exists. Here we construct an ultra-low power, non-volatile, cryogenic memory architecture leveraging the QAHE phenomenon. Our design promises orders of magnitude lower cell area compared with the state-of-the-art cryogenic memory technologies. We harness the fundamentally quantized Hall resistance levels in moire graphene heterostructures to store non-volatile binary bits (1, 0). We perform the memory write operation through controlled hysteretic switching between the quantized Hall states, using nano-ampere level currents with opposite polarities. The non-destructive read operation is performed by sensing the polarity of the transverse Hall voltage using a separate pair of terminals. We custom design the memory architecture with a novel sensing mechanism to avoid accidental data corruption, ensure highest memory density and minimize array leakage power. Our design is transferrable to any material platform exhibiting QAHE, and provides a pathway towards realizing topologically protected memory devices.
Quantum computing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, the Google Quantum Team) report the results of experiments that purport to demonstrate quantum supremacy -- the claim that the performance of some quantum computers is better than that of classical computers on some problems. Do these results close the debate over quantum supremacy? We argue that they do not. We provide an overview of the Google Quantum Teams experiments, then identify some open questions in the quest to demonstrate quantum supremacy.
In quantum computing architectures, one important factor is the trade-off between the need to couple qubits to each other and to an external drive and the need to isolate them well enough in order to protect the information for an extended period of time. In the case of superconducting circuits, one approach is to utilize fixed frequency qubits coupled to coplanar waveguide resonators such that the system can be kept in a configuration that is relatively insensitive to noise. Here, we propose a scalable voltage-tunable quantum memory (QuMem) design concept compatible with superconducting qubit platforms. Our design builds on the recent progress in fabrication of Josephson field effect transistors (JJ-FETs) which use InAs quantum wells. The JJ-FET is incorporated into a tunable coupler between a transmission line and a high-quality resonator in order to control the overall inductance of the coupler. A full isolation of the high-quality resonator can be achieved by turning off the JJ-FET. This could allow for long coherence times and protection of the quantum information inside the storage cavity. The proposed design would facilitate the implementation of random access memory for storage of quantum information in between computational gate operations.
94 - N. Jiang , Y.-F. Pu , W. Chang 2019
Random access memory is an indispensable device for classical information technology. Analog to this, for quantum information technology, it is desirable to have a random access quantum memory with many memory cells and programmable access to each cell. We report an experiment that realizes a random access quantum memory of 105 qubits carried by 210 memory cells in a macroscopic atomic ensemble. We demonstrate storage of optical qubits into these memory cells and their read-out at programmable times by arbitrary orders with fidelities exceeding any classical bound. Experimental realization of a random access quantum memory with many memory cells and programmable control of its write-in and read-out makes an important step for its application in quantum communication, networking, and computation.
As in conventional computing, key attributes of quantum memories are high storage density and, crucially, random access, or the ability to read from or write to an arbitrarily chosen register. However, achieving such random access with quantum memories in a dense, hardware-efficient manner remains a challenge, for example requiring dedicated cavities per qubit or pulsed field gradients. Here we introduce a protocol using chirped pulses to encode qubits within an ensemble of quantum two-level systems, offering both random access and naturally supporting dynamical decoupling to enhance the memory lifetime. We demonstrate the protocol in the microwave regime using donor spins in silicon coupled to a superconducting cavity, storing up to four multi-photon microwave pulses in distinct memory modes and retrieving them on-demand up to 2~ms later. A further advantage is the natural suppression of superradiant echo emission, which we show is critical when approaching unit cooperativity. This approach offers the potential for microwave random access quantum memories with lifetimes exceeding seconds, while the chirped pulse phase encoding could also be applied in the optical regime to enhance quantum repeaters and networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا