Do you want to publish a course? Click here

An Efficient Paradigm for Feasibility Guarantees in Legged Locomotion

222   0   0.0 ( 0 )
 Added by Michele Focchi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Developing feasible body trajectories for legged systems on arbitrary terrains is a challenging task. Given some contact points, the trajectories for the Center of Mass (CoM) and body orientation, designed to move the robot, must satisfy crucial constraints to maintain balance, and to avoid violating physical actuation and kinematic limits. In this paper, we present a paradigm that allows to design feasible trajectories in an efficient manner. In continuation to our previous work, we extend the notion of the 2D feasible region, where static balance and the satisfaction of actuation limits were guaranteed, whenever the projection of the CoM lies inside the proposed admissible region. We here develop a general formulation of the improved feasible region to guarantee dynamic balance alongside the satisfaction of both actuation and kinematic limits for arbitrary terrains in an efficient manner. To incorporate the feasibility of the kinematic limits, we introduce an algorithm that computes the reachable region of the CoM. Furthermore, we propose an efficient planning strategy that utilizes the improved feasible region to design feasible CoM and body orientation trajectories. Finally, we validate the capabilities of the improved feasible region and the effectiveness of the proposed planning strategy, using simulations and experiments on the HyQ robot and comparing them to a previously developed heuristic approach. Various scenarios and terrains that mimic confined and challenging environments are used for the validation.



rate research

Read More

We present a hierarchical framework that combines model-based control and reinforcement learning (RL) to synthesize robust controllers for a quadruped (the Unitree Laikago). The system consists of a high-level controller that learns to choose from a set of primitives in response to changes in the environment and a low-level controller that utilizes an established control method to robustly execute the primitives. Our framework learns a controller that can adapt to challenging environmental changes on the fly, including novel scenarios not seen during training. The learned controller is up to 85~percent more energy efficient and is more robust compared to baseline methods. We also deploy the controller on a physical robot without any randomization or adaptation scheme.
267 - Angelo Bratta 2019
Simplified models are useful to increase the computational efficiency of a motion planning algorithm, but their lack of accuracy have to be managed. We propose two feasibility constraints to be included in a Single Rigid Body Dynamicsbased trajectory optimizer in order to obtain robust motions in challenging terrain. The first one finds an approximate relationship between joint-torque limits and admissible contact forces, without requiring the joint positions. The second one proposes a leg model to prevent leg collision with the environment. Such constraints have been included in a simplified nonlinear nonconvex trajectory optimization problem. We demonstrate the feasibility of the resulting motion plans both in simulation and on the Hydraulically actuated Quadruped (HyQ) robot, considering experiments on an irregular terrain.
We present a new open-source torque-controlled legged robot system, with a low-cost and low-complexity actuator module at its core. It consists of a high-torque brushless DC motor and a low-gear-ratio transmission suitable for impedance and force control. We also present a novel foot contact sensor suitable for legged locomotion with hard impacts. A 2.2 kg quadruped robot with a large range of motion is assembled from eight identical actuator modules and four lower legs with foot contact sensors. Leveraging standard plastic 3D printing and off-the-shelf parts results in a lightweight and inexpensive robot, allowing for rapid distribution and duplication within the research community. We systematically characterize the achieved impedance at the foot in both static and dynamic scenarios, and measure a maximum dimensionless leg stiffness of 10.8 without active damping, which is comparable to the leg stiffness of a running human. Finally, to demonstrate the capabilities of the quadruped, we present a novel controller which combines feedforward contact forces computed from a kino-dynamic optimizer with impedance control of the center of mass and base orientation. The controller can regulate complex motions while being robust to environmental uncertainty.
We present an open-source untethered quadrupedal soft robot platform for dynamic locomotion (e.g., high-speed running and backflipping). The robot is mostly soft (80 vol.%) while driven by four geared servo motors. The robots soft body and soft legs were 3D printed with gyroid infill using a flexible material, enabling it to conform to the environment and passively stabilize during locomotion on multi-terrain environments. In addition, we simulated the robot in a real-time soft body simulation. With tuned gaits in simulation, the real robot can locomote at a speed of 0.9 m/s (2.5 body length/second), substantially faster than most untethered legged soft robots published to date. We hope this platform, along with its verified simulator, can catalyze the development of soft robotics.
Hierarchical learning has been successful at learning generalizable locomotion skills on walking robots in a sample-efficient manner. However, the low-dimensional latent action used to communicate between two layers of the hierarchy is typically user-designed. In this work, we present a fully-learned hierarchical framework, that is capable of jointly learning the low-level controller and the high-level latent action space. Once this latent space is learned, we plan over continuous latent actions in a model-predictive control fashion, using a learned high-level dynamics model. This framework generalizes to multiple robots, and we present results on a Daisy hexapod simulation, A1 quadruped simulation, and Daisy robot hardware. We compare a range of learned hierarchical approaches from literature, and show that our framework outperforms baselines on multiple tasks and two simulations. In addition to learning approaches, we also compare to inverse-kinematics (IK) acting on desired robot motion, and show that our fully-learned framework outperforms IK in adverse settings on both A1 and Daisy simulations. On hardware, we show the Daisy hexapod achieve multiple locomotion tasks, in an unstructured outdoor setting, with only 2000 hardware samples, reinforcing the robustness and sample-efficiency of our approach.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا