No Arabic abstract
Recently, convolutional neural networks (CNNs)-based facial landmark detection methods have achieved great success. However, most of existing CNN-based facial landmark detection methods have not attempted to activate multiple correlated facial parts and learn different semantic features from them that they can not accurately model the relationships among the local details and can not fully explore more discriminative and fine semantic features, thus they suffer from partial occlusions and large pose variations. To address these problems, we propose a cross-order cross-semantic deep network (CCDN) to boost the semantic features learning for robust facial landmark detection. Specifically, a cross-order two-squeeze multi-excitation (CTM) module is proposed to introduce the cross-order channel correlations for more discriminative representations learning and multiple attention-specific part activation. Moreover, a novel cross-order cross-semantic (COCS) regularizer is designed to drive the network to learn cross-order cross-semantic features from different activation for facial landmark detection. It is interesting to show that by integrating the CTM module and COCS regularizer, the proposed CCDN can effectively activate and learn more fine and complementary cross-order cross-semantic features to improve the accuracy of facial landmark detection under extremely challenging scenarios. Experimental results on challenging benchmark datasets demonstrate the superiority of our CCDN over state-of-the-art facial landmark detection methods.
Recently, heatmap regression has been widely explored in facial landmark detection and obtained remarkable performance. However, most of the existing heatmap regression-based facial landmark detection methods neglect to explore the high-order feature correlations, which is very important to learn more representative features and enhance shape constraints. Moreover, no explicit global shape constraints have been added to the final predicted landmarks, which leads to a reduction in accuracy. To address these issues, in this paper, we propose a Multi-order Multi-constraint Deep Network (MMDN) for more powerful feature correlations and shape constraints learning. Specifically, an Implicit Multi-order Correlating Geometry-aware (IMCG) model is proposed to introduce the multi-order spatial correlations and multi-order channel correlations for more discriminative representations. Furthermore, an Explicit Probability-based Boundary-adaptive Regression (EPBR) method is developed to enhance the global shape constraints and further search the semantically consistent landmarks in the predicted boundary for robust facial landmark detection. Its interesting to show that the proposed MMDN can generate more accurate boundary-adaptive landmark heatmaps and effectively enhance shape constraints to the predicted landmarks for faces with large pose variations and heavy occlusions. Experimental results on challenging benchmark datasets demonstrate the superiority of our MMDN over state-of-the-art facial landmark detection methods. The code has been publicly available at https://github.com/junwan2014/MMDN-master.
A big, diverse and balanced training data is the key to the success of deep neural network training. However, existing publicly available datasets used in facial landmark localization are usually much smaller than those for other computer vision tasks. A small dataset without diverse and balanced training samples cannot support the training of a deep network effectively. To address the above issues, this paper presents a novel Separable Batch Normalization (SepBN) module with a Cross-protocol Network Training (CNT) strategy for robust facial landmark localization. Different from the standard BN layer that uses all the training data to calculate a single set of parameters, SepBN considers that the samples of a training dataset may belong to different sub-domains. Accordingly, the proposed SepBN module uses multiple sets of parameters, each corresponding to a specific sub-domain. However, the selection of an appropriate branch in the inference stage remains a challenging task because the sub-domain of a test sample is unknown. To mitigate this difficulty, we propose a novel attention mechanism that assigns different weights to each branch for automatic selection in an effective style. As a further innovation, the proposed CNT strategy trains a network using multiple datasets having different facial landmark annotation systems, boosting the performance and enhancing the generalization capacity of the trained network. The experimental results obtained on several well-known datasets demonstrate the effectiveness of the proposed method.
Recently, deep learning based facial landmark detection has achieved great success. Despite this, we notice that the semantic ambiguity greatly degrades the detection performance. Specifically, the semantic ambiguity means that some landmarks (e.g. those evenly distributed along the face contour) do not have clear and accurate definition, causing inconsistent annotations by annotators. Accordingly, these inconsistent annotations, which are usually provided by public databases, commonly work as the ground-truth to supervise network training, leading to the degraded accuracy. To our knowledge, little research has investigated this problem. In this paper, we propose a novel probabilistic model which introduces a latent variable, i.e. the real ground-truth which is semantically consistent, to optimize. This framework couples two parts (1) training landmark detection CNN and (2) searching the real ground-truth. These two parts are alternatively optimized: the searched real ground-truth supervises the CNN training; and the trained CNN assists the searching of real ground-truth. In addition, to recover the unconfidently predicted landmarks due to occlusion and low quality, we propose a global heatmap correction unit (GHCU) to correct outliers by considering the global face shape as a constraint. Extensive experiments on both image-based (300W and AFLW) and video-based (300-VW) databases demonstrate that our method effectively improves the landmark detection accuracy and achieves the state of the art performance.
Recently, there is an increasing demand for automatically detecting anatomical landmarks which provide rich structural information to facilitate subsequent medical image analysis. Current methods related to this task often leverage the power of deep neural networks, while a major challenge in fine tuning such models in medical applications arises from insufficient number of labeled samples. To address this, we propose to regularize the knowledge transfer across source and target tasks through cross-task representation learning. The proposed method is demonstrated for extracting facial anatomical landmarks which facilitate the diagnosis of fetal alcohol syndrome. The source and target tasks in this work are face recognition and landmark detection, respectively. The main idea of the proposed method is to retain the feature representations of the source model on the target task data, and to leverage them as an additional source of supervisory signals for regularizing the target model learning, thereby improving its performance under limited training samples. Concretely, we present two approaches for the proposed representation learning by constraining either final or intermediate model features on the target model. Experimental results on a clinical face image dataset demonstrate that the proposed approach works well with few labeled data, and outperforms other compared approaches.
We present a method for highly efficient landmark detection that combines deep convolutional neural networks with well established model-based fitting algorithms. Motivated by established model-based fitting methods such as active shapes, we use a PCA of the landmark positions to allow generative modeling of facial landmarks. Instead of computing the model parameters using iterative optimization, the PCA is included in a deep neural network using a novel layer type. The network predicts model parameters in a single forward pass, thereby allowing facial landmark detection at several hundreds of frames per second. Our architecture allows direct end-to-end training of a model-based landmark detection method and shows that deep neural networks can be used to reliably predict model parameters directly without the need for an iterative optimization. The method is evaluated on different datasets for facial landmark detection and medical image segmentation. PyTorch code is freely available at https://github.com/justusschock/shapenet