Do you want to publish a course? Click here

Generating Rotating Spacetime in Ricci-Based Gravity: Naked Singularity as a Black Hole Mimicker

105   0   0.0 ( 0 )
 Added by Wei-Hsiang Shao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the lack of rotating solutions sourced by matter in General Relativity as well as in modified gravity theories, we extend a recently discovered exact rotating solution of the minimal Einstein-scalar theory to its counterpart in Eddington-inspired Born-Infeld gravity coupled to a Born-Infeld scalar field. This is accomplished with the implementation of a well-developed mapping between solutions of Ricci-Based Palatini theories of gravity and General Relativity. The new solution is parametrized by the scalar charge and the Born-Infeld coupling constant apart from the mass and spin of the compact object. Compared to the spacetime prior to the mapping, we find that the high-energy modifications at the Born-Infeld scale are able to suppress but not remove the curvature divergence of the original naked null singularity. Depending on the sign of the Born-Infeld coupling constant, these modifications may even give rise to an additional timelike singularity exterior to the null one. In spite of that, both of the naked singularities before and after the mapping are capable of casting shadows, and as a consequence of the mapping relation, their shadows turn out to be identical as seen by a distant observer on the equatorial plane. Even though the scalar field induces a certain oblateness to the appearance of the shadow with its left and right endpoints held fixed, the closedness condition for the shadow contour sets a small upper bound on the absolute value of the scalar charge, which leads to observational features of the shadow closely resembling those of a Kerr black hole.



rate research

Read More

63 - V. S. Manko , E. Ruiz 2018
We report about the possibility for interacting Kerr sources to exist in two different states - black holes or naked singularities - both states characterized by the same masses and angular momenta. Another surprising discovery reported by us is that in spite of the absence of balance between two Kerr black holes, the latter nevertheless can repel each other, which provides a good opportunity for experimental detection of the spin-spin repulsive force through the observation of astrophysical black-hole binaries.
We derive here the orbit equations of particles in naked singularity spacetimes, namely the Bertrand (BST) and Janis-Newman-Winicour (JNW) geometries, and for the Schwarzschild black hole. We plot the orbit equations and find the Perihelion precession of the orbits of particles in the BST and JNW spacetimes and compare these with the Schwarzschild black hole spacetime. We find and discuss different distinguishing properties in the effective potentials and orbits of particle in BST, JNW and Schwarzschild spacetimes, and the particle trajectories are shown for the matching of BST with an external Schwarzschild spacetime. We show that the nature of perihelion precession of orbits in BST and Schwarzschild spacetimes are similar, while in the JNW case the nature of perihelion precession of orbits is opposite to that of the Schwarzschild and BST spacetimes. Other interesting and important features of these orbits are pointed out.
In this paper, we derive the solutions of orbit equations for a class of naked singularity spacetimes, and compare these with timelike orbits, that is, particle trajectories in the Schwarzschild black hole spacetime. The Schwarzschild and naked singularity spacetimes considered here can be formed as end state of a spherically symmetric gravitational collapse of a matter cloud. We find and compare the perihelion precession of the particle orbits in the naked singularity spacetime with that of the Schwarzschild black hole. We then discuss different distinguishable physical properties of timelike orbits in the black hole and naked singularity spacetimes and implications are discussed. Several interesting differences follow from our results, including the conclusion that in naked singularity spacetimes, particle bound orbits can precess in the opposite direction of particle motion, which is not possible in Schwarzschild spacetime.
In the context of ghost-free, infinite derivative gravity, we will provide a quantum mechanical framework in which we can describe astrophysical objects devoid of curvature singularity and event horizon. In order to avoid ghosts and singularity, the gravitational interaction has to be nonlocal, therefore, we call these objects as nonlocal stars. Quantum mechanically a nonlocal star is a self-gravitational bound system of many gravitons interacting nonlocally. Outside the nonlocal star the spacetime is well described by the Schwarzschild metric, while inside we have a non-vacuum spacetime metric which tends to be conformally flat at the origin. Remarkably, in the most compact scenario the radius of a nonlocal star is of the same order of the Buchdahl limit, therefore slightly larger than the Schwarzschild radius, such that there can exist a photosphere. These objects live longer than a Schwarzschild blackhole and they are very good absorbers, due to the fact that the number of available states is larger than that of a blackhole. As a result nonlocal stars, not only can be excellent blackhole mimickers, but can also be considered as dark matter candidates. In particular, nonlocal stars with masses below $10^{14}$g can be made stable compared to the age of the Universe.
We first advance a mathematical novelty that the three geometrically and topologically distinct objects mentioned in the title can be exactly obtained from the Jordan frame vacuum Brans I solution by a combination of coordinate transformations, trigonometric identities and complex Wick rotation. Next, we study their respective accretion properties using the Page-Thorne model which studies accretion properties exclusively for $rgeq r_{text{ms}}$ (the minimally stable radius of particle orbits), while the radii of singularity/ throat/ horizon $r<r_{text{ms}}$. Also, its Page-Thorne efficiency $epsilon$ is found to increase with decreasing $r_{text{ms}}$ and also yields $epsilon=0.0572$ for Schwarzschild black hole (SBH). But in the singular limit $rrightarrow r_{s}$ (radius of singularity), we have $epsilonrightarrow 1$ giving rise to $100 %$ efficiency in agreement with the efficiency of the naked singularity constructed in [10]. We show that the differential accretion luminosity $frac{dmathcal{L}_{infty}}{dln{r}}$ of Buchdahl naked singularity (BNS) is always substantially larger than that of SBH, while Eddington luminosity at infinity $L_{text{Edd}}^{infty}$ for BNS could be arbitrarily large at $rrightarrow r_{s}$ due to the scalar field $phi$ that is defined in $(r_{s}, infty)$. It is concluded that BNS accretion profiles can still be higher than those of regular objects in the universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا