No Arabic abstract
The nature of the progenitors and explosion mechanism of Type Iax supernovae (SNe Iax) remain a mystery. The single-degenerate (SD) systems that involve the incomplete pure deflagration explosions of near-Chandrasekhar-mass white dwarfs (WDs) have recently been proposed for producing SNe Iax, in which non-degenerate companions are expected to survive from SN explosions. In this work we concentrate on the main-sequence (MS) donor SD progenitor systems. By mapping the computed companion models from three-dimensional hydrodynamical simulations of ejecta-companion interaction into a one-dimensional stellar evolution code MESA, we investigate the long-term appearance and observational signatures of surviving MS companions of SNe Iax by tracing their post-impact evolution. Depending on different MS companion models, it is found that the shocked surviving companion stars can significantly expand and evolve to be more luminous (5-500 Lsun) for a time-scale of 10-1e4 yr. Comparing with the late-time light curve of an observed SN Iax (SN 2005hk), it is suggested that surviving MS companions of SNe Iax would expect to be visible about 1000 days after the explosion when SN itself has been faded.
Type Iax supernovae may arise from failed explosions of white dwarfs that leave behind a bound remnant (i.e., a postgenitor star) that could be identified in wide field surveys. To understand their observational signatures, we simulate these white dwarf (WD) postgenitors from shortly after explosion until they move back down the WD cooling track, and we consider several possible WD masses and explosion energies. To predict the peculiar surface abundances of the WD postgenitors, our models take into account gravitational settling and radiative levitation. We find that radiative levitation is significant at temperatures above a mass-dependent critical temperature, typically in the range Teff ~ 50-100 * 10^3 K, significantly increasing surface abundances of iron-group elements. Due to enhanced iron group opacity compared to normal WDs, the postgenitor peak luminosity and cooling timescale depend sensitively on mass, with more massive WDs becoming brighter but cooling much faster. We discuss our results in light of recently discovered hypervelocity white dwarfs with peculiar surface compositions, finding that our low-mass postgenitor models match many of their observational characteristics. Finally, we explore the effects of thermohaline diffusion, tentatively finding that it strongly suppresses abundance enhancements created by radiative levitation, but more realistic modeling is required to reach a firm conclusion.
Type Iax supernovae (SNe Iax) are proposed as one new sub-class of SNe Ia since they present observational properties that are sufficiently distinct from the bulk of SNe Ia. SNe Iax are the most common of all types of peculiar SNe by both number and rate, with an estimated rate of occurrence of about 5-30% of the total SN Ia rate. However, the progenitor systems of SNe Iax are still uncertain. Analyzing pre-explosion images at SN Iax positions provides a direct way to place strong constraints on the nature of progenitor systems of SNe Iax. In this work, we predict pre-explosion properties of binary companion stars in a variety of potential progenitor systems by performing detailed binary evolution calculations with the one-dimensional stellar evolution code STARS. This will be helpful for constraining progenitor systems of SNe Iax from their pre-explosion observations. With our binary evolution calculations, it is found that the non-degenerate helium (He) companion star to both a massive C/O WD (> 1.1 solar mass) and a hybrid C/O/Ne WD can provide an explanation for the observations of SN~2012Z-S1, but the hybrid WD+He star scenario is more favorable.
The single degenerate (SD) model, one of the leading models for the progenitors of Type Ia supernovae (SNe Ia), predicts that there should be binary companions that survive the supernova explosion which, in principle, should be detectable in the Galaxy. The discovery of such surviving companions could therefore provide conclusive support for the SD model. Several years ago, a new type of mysterious variables was discovered, the so-called blue large-amplitude pulsators (BLAPs). Here we show that all the properties of BLAPs can be reasonably well reproduced if they are indeed such surviving companions, in contrast to other proposed channels. This suggests that BLAPs could potentially be the long-sought surviving companions of SNe Ia. Our model also predicts a new channel for forming single hot subdwarf stars, consistent with a small group in the present hot-subdwarf-star sample.
Due to the increasing number of observations Type Ia supernovae are nowadays regarded as a heterogeneous class of objects consisting of several subclasses. One of the largest of these is the class of Type Iax supernovae (SNe Iax) which have been suggested to originate from pure deflagrations in CO Chandrasekhar-mass white dwarfs (WDs). Although a few deflagration studies have been carried out, the full diversity of the class is not captured yet. We therefore present a parameter study of single-spot ignited deflagrations with varying ignition locations, central densities, metallicities and compositions. We also explore a rigidly rotating progenitor and carry out 3D hydrodynamic simulations, nuclear network calculations and radiative transfer. The new models extend the range in brightness covered by previous studies to the lower end. Our explosions produce $^{56}$Ni masses from $5.8 times 10^{-3}$ to $9.2 times 10^{-2},M_odot$. In spite of the wide exploration of the parameter space the main characteristics of the models are primarily driven by the mass of $^{56}$Ni. Secondary parameters have too little impact to explain the observed trend among faint SNe~Iax. We report kick velocities of the bound explosion remnants from $6.9$ to $369.8,$km$,s^{-1}$. The wide exploration of the parameter space and viewing-angle effects in the radiative transfer lead to a significant spread in the synthetic observables. The trends towards the faint end of the class are, however, not reproduced. This motivates a quantification of the systematic uncertainties in the modeling procedure and the influence of the $^{56}$Ni-rich bound remnant. While the pure deflagration scenario remains a favorable explanation for bright and intermediate luminosity SNe~Iax, the possibility that SNe~Iax do not consist of a single explosion scenario needs to be considered.
We describe observed properties of the Type Iax class of supernovae (SNe Iax), consisting of SNe observationally similar to its prototypical member, SN 2002cx. The class currently has 25 members, and we present optical photometry and/or optical spectroscopy for most of them. SNe Iax are spectroscopically similar to SNe Ia, but have lower maximum-light velocities (2000 < |v| < 8000 km/s), typically lower peak magnitudes (-14.2 > M_V,peak > -18.9 mag), and most have hot photospheres. Relative to SNe Ia, SNe Iax have low luminosities for their light-curve shape. There is a correlation between luminosity and light-curve shape, similar to that of SNe Ia, but offset from that of SNe Ia and with larger scatter. Despite a host-galaxy morphology distribution that is highly skewed to late-type galaxies without any SNe Iax discovered in elliptical galaxies, there are several indications that the progenitor stars are white dwarfs (WDs): evidence of C/O burning in their maximum-light spectra, low ejecta masses, strong Fe lines in their late-time spectra, a lack of X-ray detections, and deep limits on massive stars and star formation at the SN sites. However, two SNe Iax show strong He lines in their spectra. The progenitor system and explosion model that best fits all of the data is a binary system of a C/O WD that accretes matter from a He star and has a significant deflagration. At least some of the time, this explosion will not disrupt the WD. We estimate that in a given volume there are 31^+17_-13 SNe Iax for every 100 SNe Ia, and for every 1 M_sun of iron generated by SNe Ia at z = 0, SNe Iax generate 0.052^+0.017_-0.014 M_sun. Being the largest class of peculiar SNe, thousands of SNe Iax will be discovered by LSST. Future detailed observations of SNe Iax should further our understanding of both their progenitor systems and explosions as well as those of SNe Ia.