Do you want to publish a course? Click here

OGNet: Towards a Global Oil and Gas Infrastructure Database using Deep Learning on Remotely Sensed Imagery

70   0   0.0 ( 0 )
 Added by Hao Sheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

At least a quarter of the warming that the Earth is experiencing today is due to anthropogenic methane emissions. There are multiple satellites in orbit and planned for launch in the next few years which can detect and quantify these emissions; however, to attribute methane emissions to their sources on the ground, a comprehensive database of the locations and characteristics of emission sources worldwide is essential. In this work, we develop deep learning algorithms that leverage freely available high-resolution aerial imagery to automatically detect oil and gas infrastructure, one of the largest contributors to global methane emissions. We use the best algorithm, which we call OGNet, together with expert review to identify the locations of oil refineries and petroleum terminals in the U.S. We show that OGNet detects many facilities which are not present in four standard public datasets of oil and gas infrastructure. All detected facilities are associated with characteristics known to contribute to methane emissions, including the infrastructure type and the number of storage tanks. The data curated and produced in this study is freely available at http://stanfordmlgroup.github.io/projects/ognet .



rate research

Read More

Wildfires are one of the costliest and deadliest natural disasters in the US, causing damage to millions of hectares of forest resources and threatening the lives of people and animals. Of particular importance are risks to firefighters and operational forces, which highlights the need for leveraging technology to minimize danger to people and property. FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) offers a dataset of aerial images of fires along with methods for fire detection and segmentation which can help firefighters and researchers to develop optimal fire management strategies. This paper provides a fire image dataset collected by drones during a prescribed burning piled detritus in an Arizona pine forest. The dataset includes video recordings and thermal heatmaps captured by infrared cameras. The captured videos and images are annotated and labeled frame-wise to help researchers easily apply their fire detection and modeling algorithms. The paper also highlights solutions to two machine learning problems: (1) Binary classification of video frames based on the presence [and absence] of fire flames. An Artificial Neural Network (ANN) method is developed that achieved a 76% classification accuracy. (2) Fire detection using segmentation methods to precisely determine fire borders. A deep learning method is designed based on the U-Net up-sampling and down-sampling approach to extract a fire mask from the video frames. Our FLAME method approached a precision of 92% and a recall of 84%. Future research will expand the technique for free burning broadcast fire using thermal images.
How do the neural networks distinguish two images? It is of critical importance to understand the matching mechanism of deep models for developing reliable intelligent systems for many risky visual applications such as surveillance and access control. However, most existing deep metric learning methods match the images by comparing feature vectors, which ignores the spatial structure of images and thus lacks interpretability. In this paper, we present a deep interpretable metric learning (DIML) method for more transparent embedding learning. Unlike conventional metric learning methods based on feature vector comparison, we propose a structural matching strategy that explicitly aligns the spatial embeddings by computing an optimal matching flow between feature maps of the two images. Our method enables deep models to learn metrics in a more human-friendly way, where the similarity of two images can be decomposed to several part-wise similarities and their contributions to the overall similarity. Our method is model-agnostic, which can be applied to off-the-shelf backbone networks and metric learning methods. We evaluate our method on three major benchmarks of deep metric learning including CUB200-2011, Cars196, and Stanford Online Products, and achieve substantial improvements over popular metric learning methods with better interpretability. Code is available at https://github.com/wl-zhao/DIML
81 - Sayak Paul , Siddha Ganju 2021
Floods wreak havoc throughout the world, causing billions of dollars in damages, and uprooting communities, ecosystems and economies. Accurate and robust flood detection including delineating open water flood areas and identifying flood levels can aid in disaster response and mitigation. However, estimating flood levels remotely is of essence as physical access to flooded areas is limited and the ability to deploy instruments in potential flood zones can be dangerous. Aligning flood extent mapping with local topography can provide a plan-of-action that the disaster response team can consider. Thus, remote flood level estimation via satellites like Sentinel-1 can prove to be remedial. The Emerging Techniques in Computational Intelligence (ETCI) competition on Flood Detection tasked participants with predicting flooded pixels after training with synthetic aperture radar (SAR) images in a supervised setting. We use a cyclical approach involving two stages (1) training an ensemble model of multiple UNet architectures with available high and low confidence labeled data and, generating pseudo labels or low confidence labels on the entire unlabeled test dataset, and then, (2) filter out quality generated labels and, (3) combining the generated labels with the previously available high confidence labeled dataset. This assimilated dataset is used for the next round of training ensemble models. This cyclical process is repeated until the performance improvement plateaus. Additionally, we post process our results with Conditional Random Fields. Our approach sets the second highest score on the public hold-out test leaderboard for the ETCI competition with 0.7654 IoU. To the best of our knowledge we believe this is one of the first works to try out semi-supervised learning to improve flood segmentation models.
139 - Rui Li , Shunyi Zheng , Ce Zhang 2021
Semantic segmentation using fine-resolution remotely sensed images plays a critical role in many practical applications, such as urban planning, environmental protection, natural and anthropogenic landscape monitoring, etc. However, the automation of semantic segmentation, i.e., automatic categorization/labeling and segmentation is still a challenging task, particularly for fine-resolution images with huge spatial and spectral complexity. Addressing such a problem represents an exciting research field, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose an approach for automatic land segmentation based on the Feature Pyramid Network (FPN). As a classic architecture, FPN can build a feature pyramid with high-level semantics throughout. However, intrinsic defects in feature extraction and fusion hinder FPN from further aggregating more discriminative features. Hence, we propose an Attention Aggregation Module (AAM) to enhance multi-scale feature learning through attention-guided feature aggregation. Based on FPN and AAM, a novel framework named Attention Aggregation Feature Pyramid Network (A2-FPN) is developed for semantic segmentation of fine-resolution remotely sensed images. Extensive experiments conducted on three datasets demonstrate the effectiveness of our A2 -FPN in segmentation accuracy. Code is available at https://github.com/lironui/A2-FPN.
Extreme precipitation events, such as violent rainfall and hail storms, routinely ravage economies and livelihoods around the developing world. Climate change further aggravates this issue. Data-driven deep learning approaches could widen the access to accurate multi-day forecasts, to mitigate against such events. However, there is currently no benchmark dataset dedicated to the study of global precipitation forecasts. In this paper, we introduce textbf{RainBench}, a new multi-modal benchmark dataset for data-driven precipitation forecasting. It includes simulated satellite data, a selection of relevant meteorological data from the ERA5 reanalysis product, and IMERG precipitation data. We also release textbf{PyRain}, a library to process large precipitation datasets efficiently. We present an extensive analysis of our novel dataset and establish baseline results for two benchmark medium-range precipitation forecasting tasks. Finally, we discuss existing data-driven weather forecasting methodologies and suggest future research avenues.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا