No Arabic abstract
Anonymized smartphone-based mobility data has been widely adopted in devising and evaluating COVID-19 response strategies such as the targeting of public health resources. Yet little attention has been paid to measurement validity and demographic bias, due in part to the lack of documentation about which users are represented as well as the challenge of obtaining ground truth data on unique visits and demographics. We illustrate how linking large-scale administrative data can enable auditing mobility data for bias in the absence of demographic information and ground truth labels. More precisely, we show that linking voter roll data -- containing individual-level voter turnout for specific voting locations along with race and age -- can facilitate the construction of rigorous bias and reliability tests. These tests illuminate a sampling bias that is particularly noteworthy in the pandemic context: older and non-white voters are less likely to be captured by mobility data. We show that allocating public health resources based on such mobility data could disproportionately harm high-risk elderly and minority groups.
The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds. Different efforts have been made, with compartmental models in epidemiology and statistical models such as AutoRegressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS) or computing intelligence models. These efforts have proved useful in some instances by allowing decision makers to distinguish different scenarios during the emergency, but their accuracy has been disappointing, forecasts ignore uncertainties and less attention is given to local areas. In this study, we propose a simple Multiple Linear Regression model, optimised to use call data to forecast the number of daily confirmed cases. Moreover, we produce a probabilistic forecast that allows decision makers to better deal with risk. Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures. The simplicity, interpretability and reliability of the model, obtained in a careful forecasting exercise, is a meaningful contribution to decision makers at local level who acutely need to organise resources in already strained health services. We hope that this model would serve as a building block of other forecasting efforts that on the one hand would help front-line personal and decision makers at local level, and on the other would facilitate the communication with other modelling efforts being made at the national level to improve the way we tackle this pandemic and other similar future challenges.
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adjustment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France. Code implementing the described experiments is available at https://github.com/OptimalLockdown.
With the continued spread of coronavirus, the task of forecasting distinctive COVID-19 growth curves in different cities, which remain inadequately explained by standard epidemiological models, is critical for medical supply and treatment. Predictions must take into account non-pharmaceutical interventions to slow the spread of coronavirus, including stay-at-home orders, social distancing, quarantine and compulsory mask-wearing, leading to reductions in intra-city mobility and viral transmission. Moreover, recent work associating coronavirus with human mobility and detailed movement data suggest the need to consider urban mobility in disease forecasts. Here we show that by incorporating intra-city mobility and policy adoption into a novel metapopulation SEIR model, we can accurately predict complex COVID-19 growth patterns in U.S. cities ($R^2$ = 0.990). Estimated mobility change due to policy interventions is consistent with empirical observation from Apple Mobility Trends Reports (Pearsons R = 0.872), suggesting the utility of model-based predictions where data are limited. Our model also reproduces urban superspreading, where a few neighborhoods account for most secondary infections across urban space, arising from uneven neighborhood populations and heightened intra-city churn in popular neighborhoods. Therefore, our model can facilitate location-aware mobility reduction policy that more effectively mitigates disease transmission at similar social cost. Finally, we demonstrate our model can serve as a fine-grained analytic and simulation framework that informs the design of rational non-pharmaceutical interventions policies.
The COVID-19 epidemic is considered as the global health crisis of the whole society and the greatest challenge mankind faced since World War Two. Unfortunately, the fake news about COVID-19 is spreading as fast as the virus itself. The incorrect health measurements, anxiety, and hate speeches will have bad consequences on peoples physical health, as well as their mental health in the whole world. To help better combat the COVID-19 fake news, we propose a new fake news detection dataset MM-COVID(Multilingual and Multidimensional COVID-19 Fake News Data Repository). This dataset provides the multilingual fake news and the relevant social context. We collect 3981 pieces of fake news content and 7192 trustworthy information from English, Spanish, Portuguese, Hindi, French and Italian, 6 different languages. We present a detailed and exploratory analysis of MM-COVID from different perspectives and demonstrate the utility of MM-COVID in several potential applications of COVID-19 fake news study on multilingual and social media.
Using smartphone location data from Colombia, Mexico, and Indonesia, we investigate how non-pharmaceutical policy interventions intended to mitigate the spread of the COVID-19 pandemic impact human mobility. In all three countries, we find that following the implementation of mobility restriction measures, human movement decreased substantially. Importantly, we also uncover large and persistent differences in mobility reduction between wealth groups: on average, users in the top decile of wealth reduced their mobility up to twice as much as users in the bottom decile. For decision-makers seeking to efficiently allocate resources to response efforts, these findings highlight that smartphone location data can be leveraged to tailor policies to the needs of specific socioeconomic groups, especially the most vulnerable.