No Arabic abstract
Reinforcement learning (RL) is promising for complicated stochastic nonlinear control problems. Without using a mathematical model, an optimal controller can be learned from data evaluated by certain performance criteria through trial-and-error. However, the data-based learning approach is notorious for not guaranteeing stability, which is the most fundamental property for any control system. In this paper, the classic Lyapunovs method is explored to analyze the uniformly ultimate boundedness stability (UUB) solely based on data without using a mathematical model. It is further shown how RL with UUB guarantee can be applied to control dynamic systems with safety constraints. Based on the theoretical results, both off-policy and on-policy learning algorithms are proposed respectively. As a result, optimal controllers can be learned to guarantee UUB of the closed-loop system both at convergence and during learning. The proposed algorithms are evaluated on a series of robotic continuous control tasks with safety constraints. In comparison with the existing RL algorithms, the proposed method can achieve superior performance in terms of maintaining safety. As a qualitative evaluation of stability, our method shows impressive resilience even in the presence of external disturbances.
Reinforcement Learning (RL) and its integration with deep learning have achieved impressive performance in various robotic control tasks, ranging from motion planning and navigation to end-to-end visual manipulation. However, stability is not guaranteed in model-free RL by solely using data. From a control-theoretic perspective, stability is the most important property for any control system, since it is closely related to safety, robustness, and reliability of robotic systems. In this paper, we propose an actor-critic RL framework for control which can guarantee closed-loop stability by employing the classic Lyapunovs method in control theory. First of all, a data-based stability theorem is proposed for stochastic nonlinear systems modeled by Markov decision process. Then we show that the stability condition could be exploited as the critic in the actor-critic RL to learn a controller/policy. At last, the effectiveness of our approach is evaluated on several well-known 3-dimensional robot control tasks and a synthetic biology gene network tracking task in three different popular physics simulation platforms. As an empirical evaluation on the advantage of stability, we show that the learned policies can enable the systems to recover to the equilibrium or way-points when interfered by uncertainties such as system parametric variations and external disturbances to a certain extent.
This paper presents a novel model-reference reinforcement learning algorithm for the intelligent tracking control of uncertain autonomous surface vehicles with collision avoidance. The proposed control algorithm combines a conventional control method with reinforcement learning to enhance control accuracy and intelligence. In the proposed control design, a nominal system is considered for the design of a baseline tracking controller using a conventional control approach. The nominal system also defines the desired behaviour of uncertain autonomous surface vehicles in an obstacle-free environment. Thanks to reinforcement learning, the overall tracking controller is capable of compensating for model uncertainties and achieving collision avoidance at the same time in environments with obstacles. In comparison to traditional deep reinforcement learning methods, our proposed learning-based control can provide stability guarantees and better sample efficiency. We demonstrate the performance of the new algorithm using an example of autonomous surface vehicles.
Deep learning has enjoyed much recent success, and applying state-of-the-art model learning methods to controls is an exciting prospect. However, there is a strong reluctance to use these methods on safety-critical systems, which have constraints on safety, stability, and real-time performance. We propose a framework which satisfies these constraints while allowing the use of deep neural networks for learning model uncertainties. Central to our method is the use of Bayesian model learning, which provides an avenue for maintaining appropriate degrees of caution in the face of the unknown. In the proposed approach, we develop an adaptive control framework leveraging the theory of stochastic CLFs (Control Lyapunov Functions) and stochastic CBFs (Control Barrier Functions) along with tractable Bayesian model learning via Gaussian Processes or Bayesian neural networks. Under reasonable assumptions, we guarantee stability and safety while adapting to unknown dynamics with probability 1. We demonstrate this architecture for high-speed terrestrial mobility targeting potential applications in safety-critical high-speed Mars rover missions.
Reinforcement learning is showing great potentials in robotics applications, including autonomous driving, robot manipulation and locomotion. However, with complex uncertainties in the real-world environment, it is difficult to guarantee the successful generalization and sim-to-real transfer of learned policies theoretically. In this paper, we introduce and extend the idea of robust stability and $H_infty$ control to design policies with both stability and robustness guarantee. Specifically, a sample-based approach for analyzing the Lyapunov stability and performance robustness of a learning-based control system is proposed. Based on the theoretical results, a maximum entropy algorithm is developed for searching Lyapunov function and designing a policy with provable robust stability guarantee. Without any specific domain knowledge, our method can find a policy that is robust to various uncertainties and generalizes well to different test environments. In our experiments, we show that our method achieves better robustness to both large impulsive disturbances and parametric variations in the environment than the state-of-art results in both robust and generic RL, as well as classic control. Anonymous code is available to reproduce the experimental results at https://github.com/RobustStabilityGuaranteeRL/RobustStabilityGuaranteeRL.
This paper studies the constrained/safe reinforcement learning (RL) problem with sparse indicator signals for constraint violations. We propose a model-based approach to enable RL agents to effectively explore the environment with unknown system dynamics and environment constraints given a significantly small number of violation budgets. We employ the neural network ensemble model to estimate the prediction uncertainty and use model predictive control as the basic control framework. We propose the robust cross-entropy method to optimize the control sequence considering the model uncertainty and constraints. We evaluate our methods in the Safety Gym environment. The results show that our approach learns to complete the tasks with a much smaller number of constraint violations than state-of-the-art baselines. Additionally, we are able to achieve several orders of magnitude better sample efficiency when compared with constrained model-free RL approaches. The code is available at url{https://github.com/liuzuxin/safe-mbrl}.