Do you want to publish a course? Click here

EDITOR: an Edit-Based Transformer with Repositioning for Neural Machine Translation with Soft Lexical Constraints

131   0   0.0 ( 0 )
 Added by Weijia Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce an Edit-Based Transformer with Repositioning (EDITOR), which makes sequence generation flexible by seamlessly allowing users to specify preferences in output lexical choice. Building on recent models for non-autoregressive sequence generation (Gu et al., 2019), EDITOR generates new sequences by iteratively editing hypotheses. It relies on a novel reposition operation designed to disentangle lexical choice from word positioning decisions, while enabling efficient oracles for imitation learning and parallel edits at decoding time. Empirically, EDITOR uses soft lexical constraints more effectively than the Levenshtein Transformer (Gu et al., 2019) while speeding up decoding dramatically compared to constrained beam search (Post and Vilar, 2018). EDITOR also achieves comparable or better translation quality with faster decoding speed than the Levenshtein Transformer on standard Romanian-English, English-German, and English-Japanese machine translation tasks.



rate research

Read More

Neural machine translation (NMT) takes deterministic sequences for source representations. However, either word-level or subword-level segmentations have multiple choices to split a source sequence with different word segmentors or different subword vocabulary sizes. We hypothesize that the diversity in segmentations may affect the NMT performance. To integrate different segmentations with the state-of-the-art NMT model, Transformer, we propose lattice-based encoders to explore effective word or subword representation in an automatic way during training. We propose two methods: 1) lattice positional encoding and 2) lattice-aware self-attention. These two methods can be used together and show complementary to each other to further improve translation performance. Experiment results show superiorities of lattice-based encoders in word-level and subword-level representations over conventional Transformer encoder.
Neural machine translation (NMT) is nowadays commonly applied at the subword level, using byte-pair encoding. A promising alternative approach focuses on character-level translation, which simplifies processing pipelines in NMT considerably. This approach, however, must consider relatively longer sequences, rendering the training process prohibitively expensive. In this paper, we discuss a novel, Transformer-based approach, that we compare, both in speed and in quality to the Transformer at subword and character levels, as well as previously developed character-level models. We evaluate our models on 4 language pairs from WMT15: DE-EN, CS-EN, FI-EN and RU-EN. The proposed novel architecture can be trained on a single GPU and is 34% percent faster than the character-level Transformer; still, the obtained results are at least on par with it. In addition, our proposed model outperforms the subword-level model in FI-EN and shows close results in CS-EN. To stimulate further research in this area and close the gap with subword-level NMT, we make all our code and models publicly available.
Current state-of-the-art NMT systems use large neural networks that are not only slow to train, but also often require many heuristics and optimization tricks, such as specialized learning rate schedules and large batch sizes. This is undesirable as it requires extensive hyperparameter tuning. In this paper, we propose a curriculum learning framework for NMT that reduces training time, reduces the need for specialized heuristics or large batch sizes, and results in overall better performance. Our framework consists of a principled way of deciding which training samples are shown to the model at different times during training, based on the estimated difficulty of a sample and the current competence of the model. Filtering training samples in this manner prevents the model from getting stuck in bad local optima, making it converge faster and reach a better solution than the common approach of uniformly sampling training examples. Furthermore, the proposed method can be easily applied to existing NMT models by simply modifying their input data pipelines. We show that our framework can help improve the training time and the performance of both recurrent neural network models and Transformers, achieving up to a 70% decrease in training time, while at the same time obtaining accuracy improvements of up to 2.2 BLEU.
A neural machine translation (NMT) system is expensive to train, especially with high-resource settings. As the NMT architectures become deeper and wider, this issue gets worse and worse. In this paper, we aim to improve the efficiency of training an NMT by introducing a novel norm-based curriculum learning method. We use the norm (aka length or module) of a word embedding as a measure of 1) the difficulty of the sentence, 2) the competence of the model, and 3) the weight of the sentence. The norm-based sentence difficulty takes the advantages of both linguistically motivated and model-based sentence difficulties. It is easy to determine and contains learning-dependent features. The norm-based model competence makes NMT learn the curriculum in a fully automated way, while the norm-based sentence weight further enhances the learning of the vector representation of the NMT. Experimental results for the WMT14 English-German and WMT17 Chinese-English translation tasks demonstrate that the proposed method outperforms strong baselines in terms of BLEU score (+1.17/+1.56) and training speedup (2.22x/3.33x).
183 - Xu Tan , Jiale Chen , Di He 2019
Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low-resource and zero-shot translation. Given there are thousands of languages in the world and some of them are very different, it is extremely burdensome to handle them all in a single model or use a separate model for each language pair. Therefore, given a fixed resource budget, e.g., the number of models, how to determine which languages should be supported by one model is critical to multilingual NMT, which, unfortunately, has been ignored by previous work. In this work, we develop a framework that clusters languages into different groups and trains one multilingual model for each cluster. We study two methods for language clustering: (1) using prior knowledge, where we cluster languages according to language family, and (2) using language embedding, in which we represent each language by an embedding vector and cluster them in the embedding space. In particular, we obtain the embedding vectors of all the languages by training a universal neural machine translation model. Our experiments on 23 languages show that the first clustering method is simple and easy to understand but leading to suboptimal translation accuracy, while the second method sufficiently captures the relationship among languages well and improves the translation accuracy for almost all the languages over baseline methods

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا