Dependency-based Anomaly Detection: Framework, Methods and Benchmark


Abstract in English

Anomaly detection is an important research problem because anomalies often contain critical insights for understanding the unusual behavior in data. One type of anomaly detection approach is dependency-based, which identifies anomalies by examining the violations of the normal dependency among variables. These methods can discover subtle and meaningful anomalies with better interpretation. Existing dependency-based methods adopt different implementations and show different strengths and weaknesses. However, the theoretical fundamentals and the general process behind them have not been well studied. This paper proposes a general framework, DepAD, to provide a unified process for dependency-based anomaly detection. DepAD decomposes unsupervised anomaly detection tasks into feature selection and prediction problems. Utilizing off-the-shelf techniques, the DepAD framework can have various instantiations to suit different application domains. Comprehensive experiments have been conducted over one hundred instantiated DepAD methods with 32 real-world datasets to evaluate the performance of representative techniques in DepAD. To show the effectiveness of DepAD, we compare two DepAD methods with nine state-of-the-art anomaly detection methods, and the results show that DepAD methods outperform comparison methods in most cases. Through the DepAD framework, this paper gives guidance and inspiration for future research of dependency-based anomaly detection and provides a benchmark for its evaluation.

Download