Do you want to publish a course? Click here

Modelling X-ray RMS spectra II: the ultra-fast outflow of PDS 456

159   0   0.0 ( 0 )
 Added by Lucia Haerer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an improved model for excess variance spectra describing ultra-fast outflows and successfully apply it to the luminous (L ~ 10^47 erg/s) low-redshift (z = 0.184) quasar PDS 456. The model is able to account well for the broadening of the spike-like features of these outflows in the excess variance spectrum of PDS 456, by considering two effects: a correlation between the outflow velocity and the logarithmic X-ray flux and intrinsic Doppler broadening with v_int = 10^4 km/s. The models were generated by calculating the fractional excess variance of count spectra from a Monte Carlo simulation. We find evidence that the outflow in PDS 456 is structured, i.e., that there exist two or more layers with outflow velocities 0.27-0.30 c, 0.41-0.49 c, and 0.15-0.20 c for a possible third layer, which agrees well with the literature. We discuss the prospects of generally applicable models for excess variance spectra for detecting ultra-fast outflows and investigating their structure. We provide an estimate for the strength of the correlation between the outflow velocity and the logarithmic X-ray flux and investigate its validity.



rate research

Read More

Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $sim-0.25c$, as observed through observations of its blue-shifted iron K-shell absorption line profile. Here we present three new XMM-Newton observations of PDS 456; one in September 2018 where the quasar was bright and featureless, and two in September 2019, 22 days apart, occurring when the quasar was five times fainter and where strong blue-shifted lines from the wind were present. During the second September 2019 observation, three broad ($sigma=3000$ km s$^{-1}$) absorption lines were resolved in the high resolution RGS spectrum, which are identified with blue-shifted OVIII Ly$alpha$, NeIX He$alpha$ and NeX Ly$alpha$. The outflow velocity of this soft X-ray absorber was found to be $v/c=-0.258pm0.003$, fully consistent with iron K absorber with $v/c=-0.261pm0.007$. The ionization parameter and column density of the soft X-ray component ($logxi=3.4$, $N_{rm H}=2times10^{21}$ cm$^{-2}$) outflow was lower by about two orders of magnitude, when compared to the high ionization wind at iron K ($logxi=5$, $N_{rm H}=7times10^{23}$ cm$^{-2}$). Substantial variability was seen in the soft X-ray absorber between the 2019 observations, declining from $N_{rm H}=10^{23}$ cm$^{-2}$ to $N_{rm H}=10^{21}$ cm$^{-2}$ over 20 days, while the iron K component was remarkably stable. We conclude that the soft X-ray wind may originate from an inhomogeneous wind streamline passing across the line of sight and which due to its lower ionization, is located further from the black hole, on parsec scales, than the innermost disk wind.
We present simple XSPEC models for fitting excess variance spectra of AGN. Using a simple Monte-Carlo approach, we simulate a range of spectra corresponding to physical parameters varying, then calculate the resulting variance spectra. Starting from a variable power-law, we build up a set of models corresponding to the different physical processes that can affect the final excess variance spectrum. We show that the complex excess variance spectrum of IRAS 13224-3809 can be well described by such an intrinsic variability model, where the power-law variability is damped by relativistic reflection and enhanced by an ultra fast outflow. The reflection flux is correlated with that of the power-law, but not perfectly. We argue that this correlation is stronger at high frequencies, where reverberation lags are detected, while excess variance spectra are typically dominated by low frequency variability.
The quasar PDS 456 (at redshift ~0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log N_H(cm^-2) > 23, and large kinetic energies that could be important for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad absorption line (BAL) at ~1346A (observed) that might be Ly-alpha at v ~ 0.06c or NV 1240 at v ~ 0.08c. However, we use photoionisation models and comparisons to other outflow quasars to show that these BAL identifications are problematic because other lines that should accompany them are not detected. We argue that the UV BAL is probably CIV 1549 at v ~ 0.30c. This would be the fastest UV outflow ever reported, but its speed is similar to the X-ray outflow and its appearance overall is similar to relativistic UV BALs observed in other quasars. The CIV BAL identification is also supported indirectly by the tentative detection of another broad CIV line at v ~ 0.19c. The high speeds suggest that the UV outflow originates with the X-ray UFO crudely 20 to 30 r_g from the central black hole. We speculate that the CIV BAL might form in dense clumps embedded in the X-ray UFO, requiring density enhancements of only >0.4 dex compared clumpy structures already inferred for the soft X-ray absorber in PDS 456. The CIV BAL might therefore be the first detection of low-ionisation clumps proposed previously to boost the opacities in UFOs for radiative driving.
We present the spectral analysis of Chandra/HETGS and NuSTAR observations of the quasar PDS 456 from 2015, and XMM-Newton and NuSTAR archival data from 2013-2014, together with Chandra/HETGS data from 2003. We analyzed these three different epochs in a consistent way, looking for absorption features corresponding to highly ionized blueshifted absorption lines from H-like and He-like ions of iron (and nickel), as well as of other elements (O, Ne, Si, and S) in the soft band. We confirm the presence of a persistent ultra-fast outflow (UFO) with a velocity of v_out=-0.24 - -0.29c, previously detected. We also report the detection of an additional faster component of the UFO with a relativistic velocity of v_out=-0.48c. We implemented photoionization modeling, using XSTAR analytic model warmabs, to characterize the physical properties of the different kinematic components of the ultra-fast outflow and of the partial covering absorber detected in PDS 456. These two relativistic components of the ultra-fast outflow observed in the three epochs analyzed in this paper are powerful enough to impact the host galaxy of PDS 456 through AGN feedback.
New Swift monitoring observations of the variable, radio-quiet quasar, PDS 456, are presented. A bright X-ray flare was captured in September 2018, the flux increasing by a factor of 4 and with a doubling time-scale of 2 days. From the light crossing argument, the coronal size is inferred to be about 30 gravitational radii for a black hole mass of $10^{9} {rm M}_{odot}$ and the total flare energy exceeds $10^{51}$ erg. A hardening of the X-ray emission accompanied the flare, with the photon index decreasing from $Gamma=2.2$ to $Gamma=1.7$ and back again. The flare is produced in the X-ray corona, the lack of any optical or UV variability being consistent with a constant accretion rate. Simultaneous XMM-Newton and NuSTAR observations were performed, $1-3$ days after the flare peak and during the decline phase. These caught PDS 456 in a bright, bare state, where no disc wind absorption features are apparent. The hard X-ray spectrum shows a high energy roll-over, with an e-folding energy of $E_{rm fold}=51^{+11}_{-8}$ keV. The deduced coronal temperature, of $kT=13$ keV, is one of the coolest measured in any AGN and PDS 456 lies well below the predicted pair annihilation line in X-ray corona. The spectral variability, becoming softer when fainter following the flare, is consistent with models of cooling X-ray coronae. Alternatively, an increase in a non-thermal component could contribute towards the hard X-ray flare spectrum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا