Cohen-Macaulay local rings with $e_2 = e_1-e+1$


Abstract in English

In this paper we study Cohen-Macaulay local rings of dimension $d$, multiplicity $e$ and second Hilbert coefficient $e_2$ in the case $e_2 = e_1 - e + 1$. Let $h = mu(mathfrak{m}) - d$. If $e_2 eq 0$ then in our case we can prove that type $A geq e - h -1$. If type $A = e - h -1$ then we show that the associated graded ring $G(A)$ is Cohen-Macaulay. In the next case when type $A = e - h$ we determine all possible Hilbert series of $A$. In this case we show that the Hilbert Series of $A$ completely determines depth $G(A)$.

Download